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POPULATIONS ON FRAGMENTED LANDSCAPES
WITH SPATIALLY STRUCTURED HETEROGENEITIES:
LANDSCAPE GENERATION AND LOCAL DISPERSAL
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Abstract. The goal of thisinvestigation was to study the effects of spatially structured
habitat heterogeneities on locally dispersing single-species populations. In this investiga-
tion, the environmental heterogeneities were not randomly distributed, but rather were
clustered by specifying probabilities of small local configurations of the landscape, as in
local structure or pair approximations. This allows the study of landscapes with the same
amount of habitat loss but different levels of fragmentation or clustering. | describe asimple
algorithm for generating such structured landscapes. Spatially explicit simulations of pop-
ulation models on these landscapes were performed using stochastic cellular automata and
compared to predictions from mean-field and pair approximations, for which detailed der-
ivations are presented.

For populations with local dispersal, | show that the spatial correlations of habitat types
completely determine equilibrium population density on suitable sites and that the amount
of suitable habitat has no effect, precisely the opposite of what the mean-field approximation
predicts. When habitat types are randomly distributed on the landscape, the two approxi-
mations do almost equally well, and thus the additional complexity of the pair approximation
is not justified. However, when habitat types are not randomly distributed, the mean-field
approximation gives qualitatively incorrect predictions for population response to varying
habitat heterogeneity. Thus, pair approximations combine some of the best features of
spatially explicit and implicit models and serve as a useful supplement to those methods
for understanding spatially structured ecological systems, especially where environmental
heterogeneities are spatially correlated.
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heterogeneity; habitat loss and fragmentation, separating effects; local-structure approximations;
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INTRODUCTION

The effects of landscape heterogeneity resulting
from the loss and fragmentation of habitats upon bi-
ological populations is a problem of great concern to
ecologists (Diffendorfer et al. 1995, Bjernstad et al.
1998), conservation biologists (Fahrig and Merriam
1994, McCullough 1996) and agricultural managers
(Topping and Sunderland 1994). There has been grow-
ing interest in theoretical studies of habitat fragmen-
tation, and in particular the importance of the spatial
configuration of habitat (Adler and Nuernberger 1994,
Hanski 19944, b, Ives et al. 1998). For example, Can-
trell and Cosner (1991:320) used reaction-diffusion
equations to show that ‘‘it is not only the amount of
favorable habitat but also its arrangement that deter-
mines the overall suitability of the environment.”

Currently, investigations into questions about spatial
issues in ecology, and landscape heterogeneity in par-
ticular, usually fall into three categories. The first cat-
egory, spatially implicit models, is the most common
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theoretical approach. These models, which include
mean-field approximations and spatially implicit meta-
population models (Lande 1987, Gilpin and Hanski
1991, Nee and May 1992, May and Nowak 1994, Til-
man 1994, Hanski and Gilpin 1997), remove almost all
of the detailed spatial structure, and essentially assume
that spatial correlations neither exist nor play an im-
portant role. The second category, spatially explicit
models, is explored via computer simulations (Doak et
al. 1992, Dunning et al. 1995, Pulliam and Dunning
1995, Turner et al. 1995, With and Crist 1995, Bas-
compte and Solé 1996), which are based on detailed
maps of the distribution of populations or habitat types.
This approach is becoming more popular due to the
rapid growth of available computing power. The third
category, statistical approaches, is most commonly
used in field studies (e.g., Mladenoff et al. 1995, Thom-
linson 1995) to describe patterns seen in nature.
Recently, progress has been made toward bridging
the gap between spatially implicit and explicit popu-
lation models by developing analytic models that in-
corporate a small amount of local spatial structure. Re-
searchers have applied the simplest of these techniques,
known as‘‘ pair approximations,”’ to avariety of lattice-
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based spatial models (Matsuda et al. 1992, Harada and
lwasa 1994, Sato et al. 1994, Harada et al. 1995, Kubo
et al. 1996, Levin and Durrett 1996, Hiebeler 1997,
lves et al. 1998). Whereas mean-field approximations
assume that no correlations develop between sites in
the lattice over time so that one can write down a set
of differential or difference equations for the frequen-
cies or probabilities of each state on the lattice, pair
approximations involve equations describing the prob-
abilities of all possible state configurations of 2 X 1
blocks of sites (or another equivalent set of parameters,
as explained in the next section). More general versions
of these techniques, known as‘‘ local -structuretheory,”
have been applied to single-species stochastic spatial
population models using even larger blocks of sites,
suchas4 X 1 and 2 X 2, thus incorporating even more
detailed spatial information (Hiebeler 1997). Alterna-
tives to the lattice-based approach are models often
called “‘incidence-function metapopulation models,”
based on a description of the sizes and distances be-
tween various habitat patches (Adler and Nuernberger
1994, Hanski 19944, b), and models incorporating spa-
tial correlations that are continuous in space and time
(Bolker and Pacala 1997).

In this study, | adapted the techniques of pair ap-
proximations to predict the behavior of spatially ex-
plicit models that are discrete in time and space, to
characterize heterogeneous landscapes with spatial cor-
relationsin habitat types, and to generate artificial land-
scapes with spatially structured heterogeneities. This
landscape-generation algorithm allows one to specify
the proportion of sites on the landscape that are of
various habitat types, and also to specify a parameter
indicating the degree of clustering of habitat types. This
method can be used to generate structured landscapes
for theoretical studies such as the one presented here,
and also to design structured landscapes for experi-
mental manipulations in the field (e.g., Bowers et al.
1996, Bjgrnstad et al. 1998, Collinge and Forman 1998,
Dooley and Bowers 1998).

After many landscape lattices were generated, the
behavior of a locally dispersing population on these
landscapes was studied. A local-dispersal model was
chosen because many natural populations exhibit very
localized dispersal (e.g., Price et al. 1994, Topping and
Sunderland 1994, Kendrick and Walker 1995, L e Corff
1996), and it is feasible to mathematically analyze this
type of dispersal. The behavior of the popul ation model
was investigated through spatially explicit simulation
models, spatially implicit mean-field approximations,
and finally via pair approximations, which incorporated
the spatial structure of the environmental heterogeneity
as well as local spatial correlations of the population
on the landscape. This allows one to separately study
the effects of habitat loss and of fragmentation on the
population, without the complete spatially explicit de-
scription of the landscape others have claimed neces-
sary (e.g., Bascompte and Solé 1996). Note that the
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pair-approximation model developed here does not
neatly fall into any of the categories of spatial models
described in Hanski and Simberloff (1997) such as spa-
tially implicit or explicit, but rather incorporates some
aspects of both of these categories. Because devel oping
spatial models in discrete time can require a large
amount of bookkeeping (particularly for the pair ap-
proximation), detailed developments of the models
used here are included.

By using the extreme case of local dispersal and local
correlations of habitat types on the landscape, | dem-
onstrate that spatially implicit models (such as mean-
field approximations), currently the most common an-
alytic technique for studying spatial models, can give
predictions that are qualitatively incorrect when habitat
types are not randomly spatially distributed. Nonran-
dom habitat patterns are probably the norm rather than
the exception in nature (e.g., Smith et al. 1993). Thus,
the qualitative results from modeling studies based on
mean-field approximations (e.g., Lande 1987, Nee and
May 1992) may change drastically when landscape
structure is taken into account.

THE LANDSCAPES

The landscapes used in this investigation consisted
of rectangular lattices of sites, or patches. Each site
was characterized by avalueindicating its habitat type.
For simplicity, only two habitat types were used, la-
beled *““‘type 0 and “‘type 1.”” To completely specify
the landscape, one must know the state (habitat type)
of every site in the lattice, i.e., one must have a map
of the landscape. This is the spatially explicit descrip-
tion. However, there are also more coarse character-
izations of the landscape. The simplest is the spatially
implicit measure p,, the proportion of sitesin thelattice
that are of type 0. From this, p, = 1 — p,, the proportion
of sites of type 1, may then also be computed. Thisis
a spatially implicit description because it gives no in-
formation at all about the actual spatial arrangement
of habitat types. See Table 1 for definitions of many
of the terms and symbols used in this study.

A slightly more refined description of the landscape,
which incorporates a small amount of information re-
garding spatial structure, is that which specifies the
frequencies or probabilities of all possible 2 X 1 blocks
of sites. Throughout this paper, | will assume complete
spatial symmetry, in particular rotational symmetry,
i.e, plijl =pI[l], foriandjequal toOor 1. Thereare
four 2 X 1 block probabilities: p[00], p[01], p[10], and
p[11], but by spatial symmetry, p[01] = p[10]. Also,
the four probabilities must sum to 1:

p[00] + 2p[01] + p[11] =1 @

so in fact there are only two free parameters. For ex-
ample, one can choose p[00] and p[01] as the two pa-
rameters. A convenient way to specify the two free
parameters is via the global probability p, of seeing a
site of type 0, and the conditional probability g, that
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Term or symbol

Definition

Spatially implicit model

A model that describes the proportions of the landscape that are in various states

(such as empty, occupied, or unsuitable), without any information about the

locations of such sites
Spatially explicit model

A model based on a complete map of sites, which records the exact locations of each

type of site (such as empty, occupied, or unsuitable)

Mean-field approximation

A method for developing a spatially implicit model of the system of interest, by

assuming that no spatial corrections develop over time, i.e., that *‘ space doesn't

matter”’
Pair approximation
sites on a lattice

An approximation method that incorporates local spatial correlations between adjacent

Po The amount of suitable habitat on the landscape
oo The clustering of suitable habitat on the landscape
pli] The probability that a randomly chosen site on the landscape is of habitat type i

plij]
PIi]

of habitat types

The probability that a randomly chosen 2 X 1 block on the landscape is an [ij] block

The probability that a randomly chosen site on the lattice in the populations model is

in statei (0 = empty, 1 = unsuitable, 2 = occupied)

PIij] : t
model is an [ij] block

The probability that a randomly chosen 2 X 1 block on the lattice in the population

In the pair approximation model, the probability that an empty site does not get colo-
nized by any of three neighbors whose state is unknown (defined in Eq. 15)

b Fecundity (note that this parameter also incorporates aspects of dispersal and estab-
lishment). In this study, & = 0.5

i Population mortality during a time step on a site of habitat typei. In this study, p, =
03and p, =1

p Normalized 1population density, i.e., the proportion of suitable sites that are occupied

by the population

a randomly chosen neighbor of a type-0 site will also
be of type 0, or p[00|0*] in the notation of Hiebeler
(1997), where ***”’ is a placeholder indicating that we
are not specifying the value of that site. Thus, we see
that the 2 X 1 characterization of the lattice specifies
not only the proportion of sites that are of type 0, but
also a measure of the spatial correlation or clustering
of the types of adjacent sites. Note that when the spatial
distributions of the two habitat types is random, then
Ooo = Pos i-€., the conditional probability that aneighbor
of atype-0 site is also of type 0 is simply p,.

Given the 2 X 1 block probabilities p[00] and p[01],
one can translate to the global probability and cluster-
ing conditional probability as follows:

Po = p[00] + p[O1] @)

Qoo = P[00/ po. (3
Note that Eq. 2 is a special case of the general relation

pli] = 2 plij] 4

which can be used to obtain any single-site global prob-
ability from the distribution of 2 X 1 block probabil-
ities.

Similarly, one can translate in the opposite direction:

p[00] = PoToo ©)

pl01] = Po(1 — Goo)- (6)
From Eg. 1, one can then calculate

p[11] = 1 — p[00] — 2p[01] = 1 + po(deo — 2). (V)

Note that Eq. 7 requires0 = 1 + py(Qeo — 2) = 1
in order to define a valid probability. When solved for
Ooo» this constraint becomes

Qoo = 2 — Up,. (®

The intuitive explanation of this constraint isthat when
a large proportion of the habitat is of type 0 (p, is
large), then it isfairly likely that atype-0 site will have
some neighbors that are also of type 0 (g, cannot be
too small). Note that when p, < 0.5, the constraint
vanishes, and any value of gy, is possible.

Given a landscape image, one can measure p, and
Ooo (Or equivalently, the 2 X 1 block probabilities p[ij])
in order to give a simplified description of the land-
scape that captures some of the spatial structure. On
the other hand, given values for p, and gy, oOne can
construct a landscape that has the given characteriza-
tion. This is more difficult than constructing a random
landscape with a specified proportion p, of type-0 sites,
but can be achieved through the following procedure:

1) Given p, and g, compute the desired 2 X 1 block
probabilities p[ij] using Egs. 5-7.

2) Generate a random lattice that has the correct
proportion p, of sites of type 0, e.g., by setting each
site’s state to 0 independently with probability p,. Then,
measure the 2 X 1 block probabilities in the lattice by
looking at the four neighbors of each site. Denote the
measured block probabilities by p[ij]. On the initial
randomly generated |attice where the states of sites are
independently chosen, one will find P[00] = p3,
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p[11] = p3, and P[01] = pyp,, With slight deviations
from these values possible due to the randomness of
the algorithm and finite size of the lattice.

3) Next, select a site at random in the lattice. Com-
pute the 2 X 1 block probabilities that would result on
the lattice from changing the site's state (from 0 to 1,
or 1 to 0). If making this change will movethe lattice's
2 X 1 probabilities closer to the desired probabilities,
change the state of the site; otherwise, leave the site
in its current state. To calculate the difference D be-
tween the measured and desired block probabilities, use
the following expression, which is simply the mathe-
matical norm [|p — Pl

D = |p[00] — p[O0]| + 2] p[01] — p[O1] |
+ | p[11] — p[11] |.

4) Choose another site at random (with replacement)
and try again, i.e., return to step 3. Continue selecting
sites and possibly changing their values in this way,
until the difference D between the lattice’s measured
2 X 1 probabilities and the desired probabilitiesis less
than a specified tolerance, or until some specified max-
imum number of iterations has been performed.

This procedure will generate a landscape with the
desired 2 X 1 block probabilities. However, as will be
seen later (Discussion, below), the landscape may con-
tain features at larger spatial scales as well. Note that
the measured value of p, in the landscape may deviate
from its initial correct value as the values of sites are
changed. However, when the algorithm converges on
alandscape with asmall deviation D in the 2 X 1 block
probabilities, then the measured values of p, and gy
will also converge to values very close to their desired
values; this follows from Egs. 2 and 3. The algorithm
converges very quickly when the difference between
Po and gy iS not very large; if the difference is large,
more iterations are usually required. In very extreme
cases, the algorithm may fail to converge, as will be
discussed later (Results, below).

This method could be loosely described as an asyn-
chronous analog of the method described in Mangel
and Adler (1994), but that avoids the complex rescal-
ings necessary in their method. Other methods for gen-
erating landscapes with spatially structured heteroge-
neities include those that distribute habitat types in
regular or random patterns but at multiple scales (La-
vorel et al. 1994, Neuhauser 1998), algorithms that
generate fractal patterns (With et al. 1997), and meth-
ods that distribute habitat patches in regular or clus-
tered ways across a landscape based on the distances
between patches (Deutschman et al. 1993, Adler and
Nuernberger 1994).

Fig. 1 displays severa landscapes generated using
the algorithm presented here, al of which have p, =
0.3, i.e., 30% of the sites are of type 0 (white) and 70%
are of type 1 (black). The various |landscapes were gen-
erated using different values of the clustering parameter
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Ooo- The landscape in the upper right part of the figure
has gy, = po = 0.3, i.e, randomly distributed habitat
types. For larger values of gy, the habitat types are
more clustered, forming large homogeneous areas in
the landscape. For smaller values of g, the two types
of habitat are more mixed, in patternsthat avoid placing
too many sites of the same type next to each other. If
we think of the black sites as disturbed habitat, we see
that the 2 X 1 probability characterization, particularly
when using the p, and q,, parameterization, allows one
to separately characterize the loss and fragmentation
of habitat on a landscape. Fig. 2 shows a single large
composite landscape with all possible values of p, and

Coo-
THE PoPULATION MODEL

The goal of thisinvestigation wasto study the effects
of spatially structured heterogeneities on locally dis-
persing single-species populations on the landscape.
The population model used was a discrete-time version
of the basic contact process (Durrett and Levin 1994,
Hiebeler 1997), modified slightly to respond to the hab-
itat types of the landscape. This is a patch-occupancy
model, where each site on the lattice contains a binary
state variable, indicating whether the speciesis present
or absent at that site (in addition to the binary state
variable indicating the habitat type of the site). During
each time step, two things happen:

1. Fecundity/Dispersal/Establishment.—First, ev-
ery occupied site sends propagules to each of its four
adjacent neighbors, independently each with probabil-
ity ¢. Thus, the number of propagules produced in one
time step by an occupied site follows a binomial (n =
4, p = ¢) distribution (so for example with ¢ = 0.5,
an occupied site produces an average of two propagules
per time step). If one or more propagules lands on an
empty site, that site becomes occupied. This step also
implements a nonlinear density dependence through
competition for space, because if multiple propagules
land on an empty site all but one are wasted, as are all
propagules that land on an occupied site. For simplicity
¢ is simply referred to as a ‘“‘fecundity parameter”
hereafter, even though it incorporates aspects of dis-
persal and establishment as well.

2. Mortality.—Next, mortality occurs. Each site in
the lattice undergoes mortality (i.e., the population at
that site is removed—the site’s habitat type is not
changed) independently with probability p; on sites of
type i (for i = 0, 1). For simplicity, in this study |
alwaysfixed ., = 1, i.e., habitat type 1 was completely
unsuitable. Note that the habitat types of sites do not
change over time; that is, the environmental hetero-
geneity is fixed.

This spatially explicit model was then studied via
computer simulations, using stochastic cellular auto-
mata (see, e.g., Caswell and Etter 1993) on a 180 X
180 lattice with wraparound boundaries (i.e., on a to-
rus). Since exploration of the simulation model showed
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oo = 0.90

Several artificially generated landscapes are shown, each of which has 30% of the sites of type O (white) and

70% of type 1 (black). The clustering parameter gy, (see The landscapes) was varied from 0.10 (very few sites of the same
type next to each other) to 0.90 (a large degree of clustering; adjacent sites are often of the same type). The landscape in
the upper right has p, = g, = 0.30; the habitat types are randomly distributed in this case. These landscapes are 100 X 100
for clarity; 180 X 180 lattices were used for the actual simulations.

that the initial population density had no significant
effects on equilibrium density, the simulations were
always begun with 50% of the suitable sites occupied,
chosen at random. On each time step, the proportion
of suitable (type-0) sites that were occupied, known as
the ““normalized patch occupancy probability’ p,, was
measured. The simulation was run until the |east-
squares regression line of p, vs. time over the last 100
time steps had a slope <0.00l, an indication that the
population density had converged to equilibrium. At
that time, the value of p, averaged over the final 10
time steps was recorded as the equilibrium value of p
for the simulation. Fig. 3 shows a sample configuration
of the lattice after reaching equilibrium.

APPROXIMATIONS
Mean field approximation

One can write down spatially implicit mean-field
equations to approximate the population model on the

heterogeneous landscape, although the mean-field ap-
proximation fails in two ways: it does not account for
the spatial clustering of habitat types on the landscape,
nor the clustering of the population within patches of
suitable landscape. Since type-1 sites are unsuitable
(because ., = 1), any given site on the lattice may be
in one of three states: 0 (empty, suitable type-0 site),
1 (unsuitable type-1 site), or 2 (occupied, suitable type-
0 site). The local-dispersal mean-field approximation
(Hiebeler 1997) assumes that no spatial correlations
develop over time between sites in the lattice, but oth-
erwiseretainsthe detail s of the spatially explicit model.
This is equivalent to running the detailed spatial sim-
ulation, but randomly shuffling the sites on the lattice
between each time step to remove any spatial corre-
lations. Under this model, one can write down a set of
nonlinear difference equations to describe the proba-
bilities of a given site being in each state on the next
timestep, P_4[i] fori =0, 1, 2, given their probabilities
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Fic. 2. A composite landscape with varying values of the
amount of suitable habitat p, (horizontal axis) and its clus-
tering gy (vertical axis). This allows one to see the patterns
of habitat distribution that result from various combinations
of the two landscape parameters. For example, the region
across the top of the figure has highly clustered patterns, but
with varying amounts of suitable habitat available from left
to right. The large white area in the lower right represents
invalid landscapes, that is, values of the parameters p, and
(o Which do not satisfy Inequality 8.

at the current time. (For clarity, capital P will be used
to denote probabilities involving the popul ation model,
while lower case p will denote probabilities involving
only the landscape heterogeneities asin The landscapes
section, above.) However, P, 1] = P[1] = p, =
1 — py (unsuitable sites remain fixed through time), and
the three values must sum to one, i.e, PJ[0] +
P[1] + P[2] = 1, which may be solved for

POl =1 - P[1] —P[2] =p,— P[2]. (9

Therefore, only one independent equation is really
needed:

Pt+1[2]

PIO]P(O - 2) + P[2]IP(2 - 2)

PLO](1 — (1 = P2d))( — o)

+ P2](1 — o)

(Po — PI2DA — (1 = P2]$))(A — wo)
+ P2~ o) (10)
where P(2 - 2) = 1 — p, is the probability that an
occupied site remains occupied until the next time step
(i.e., survives the mortality phase), and P(0 - 2) =
1 -1 - P[2]d))(L — po) is the probability that an
empty siteis colonized by at least one of its four neigh-

bors and then survives mortality. The latter equation
follows from the mean-field assumption of indepen-
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dence of sites, i.e., the assumption that any given neigh-
bor of the empty site under consideration is occupied
with probability P[2]. This implies that the empty site
will receive a propagule from that neighbor with prob-
ability P[2]d, and thus will have probability (1 —
P[2]$)* of not being colonized by any of itsfour neigh-
bors.

The proportion of suitable sites that are occupied,
i.e., the normalized patch-occupancy probability, may
then be calculated as

no. of occupied sites P.[2]
no. of suitable sites  P,[0] + P[2]"

Eq. 10 is nonlinear, but may easily be solved numer-
ically to find its fixed point P*[2]. Once the fixed point
has been found, the equilibrium value of p, denoted p*
may then be calculated using Egs. 9 and 11 as p* =
P*[2]/p,. Note that gy, the clustering parameter of the
landscape, does not appear anywhere in the mean-field
equations, because of the spatially implicit nature of
this approximation.

Finally, note that the spatially implicit mean-field
approximation developed here is a local-dispersal ap-
proximation, which simply assumes that the sites of
the lattice are randomly shuffled between each time
step. Another, more common technique for deriving
spatially implicit approximations is the infinite-dis-
persal approximation, which assumes that propagules
disperse randomly across the landscape. That is the
technique used for example by Tilman (1994), since it
is the most straightforward technique for continuous-
time models. The infinite-dispersal mean-field approx-
imation would differ only slightly from the local-dis-
persal approximation developed here. Both approxi-

Pt = (11

Fic. 3. The configuration of the lattice after reaching
equilibrium, with & = 0.5, po = 0.5, n, = 1, p, = 0.5, and
oo = 0.90. White represents empty type-0O (suitable) sites,
gray represents type-1 (unsuitable) sites, and black represents
occupied type-0 sites.
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mationswould have the same qualitative behavior (Hie-
beler 1997), and the linear terms would in fact be the
same; thus stability analyses of the linearized systems
(e.g., Edelstein-Keshet 1988:41-44) would be identi-
cal.

Pair approximation

Because the spatial configuration of habitat types on
the landscape plays a significant role in the dynamics
of the population (as will be seen in Results, below),
a more appropriate analytic technique for predicting
the behavior of the spatially explicit simulation model
is the pair approximation, also known as the 2 X 1
local-structure approximation. In this approach, one
writes down a set of equations describing P(ij], the
frequencies or probabilities of the 2 X 1 blocks [ij],
for i and j taking values 0, 1, and 2, where these three
values represent empty, unsuitable, and occupied sites,
respectively, as in the previous subsection. Although
there are technically nine such probabilities, various
symmetry assumptions and constraints reduce the num-
ber of independent probabilitiesto only three. Thethree
pair-approximation equations, derived in Appendix 1,
are as follows:

Pi.a[00] = POO{v*(1 — po)* + 2ymo(l — po)}
+ 2P [02] ypo(1 = &)1 — po) + rEPoCo
(12
Pi.a[01] = PO1]v(1 — o) + moPo(1 — Too) (13)
P2[02] = PLO0K{ v (1~ 2mo)(1 — o) = v3(1 — mo)?}
+ PO2]y(1 = 2po)(1 — po)(1 — &)

+ o(1 — 1o)PoCoo- (14)
where
_ [y - ¢PIOZ\
Y P.[0]

(. $P,[02] ’
- (1 P,[00] + P,[01] + Pt[oz]) - (19

The other probabilities P, ,[11], P,,,[12], and P,.,,[22]
may be computed as shown in Egs. A.1, A.8, and A.9
in Appendix A. Note that the three Eqgs. 12-14 are
equivalent to the set of equationsinvolving many thou-
sands of terms that one would obtain by following the
techniques described in Hiebeler (1997); but by rear-
ranging and grouping the terms, one can instead write
down a more compact set of equations as above. Also
note that the above equations capture some of the spa-
tial correlations that exist in the habitat distribution on
the landscape, the distribution of the population on the
landscape, and even spatial correlations between the
two. Also, although developed independently, this ap-
proach is very similar to that followed by Ives et al.
(1998), although in their model they also considered
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diagonally adjacent sites for habitat heterogeneity and
population dispersal. See Appendix A for further ex-
planation of differences between the pair approxima-
tion developed here and that in Ives et al. (1998).
These equations may again easily be solved numer-
ically to find the equilibrium (fixed point). Next, note
that Eq. 4 isjust as valid with population-model prob-
abilities as it was with landscape probabilities:

Pli] = > Pij]. (16)
]

Thus, one can use Eq. 16 to compute the probabilities

P,[0] and P[2], and then compute the equilibrium value

p* using Eq. 11 as before.

REsULTS

Now that the two methods for approximating the
population dynamics on structured heterogeneous land-
scapes have been developed, they can be compared to
the behavior of the actual spatially explicit simulations.
The population model on heterogeneous landscapes
was investigated for landscapes with various values of
the parameters p, (the proportion of sites that are of
types 0) and gy (the clustering parameter), with mor-
tality parameters p, = 0.3, p; = 1 (type-1 sites un-
suitable), and fecundity ¢ = 0.5. Fig. 4A shows the
equilibrium normalized patch-occupancy probability
p* as predicted by the mean-field approximation. As
explained earlier (see Approximations), in the mean-
field approximation p* depends only on the amount of
habitat available p, (on the horizontal axis), and not on
the clustering parameter g, (vertical axis).

Fig. 4B shows the equilibrium normalized patch-oc-
cupancy probability as predicted by the pair approxi-
mation. Observe that the pair approximation predicts
that p* depends only on the landscape clustering pa-
rameter gy and not at all on the amount of habitat
available p,, i.e., entirely the opposite qualitative be-
havior of the mean-field approximation. Thisresult can
be derived analytically from Eqgs. 12-14, as shown in
Appendix B. Intuitively, this result follows from the
fact that occupied patches (which are by necessity suit-
able—i.e., habitat type 0) only disperse propagules to
the four adjacent sites; thus, the conditional probability
that a neighboring site is also suitable (which is pre-
cisely gq) is all that really matters.

Fig. 4C shows the equilibrium normalized patch-oc-
cupancy probability as measured from the actual sim-
ulations. One can see that the results qualitatively
match the pair-approximation predictions much more
closely than the mean-field approximations, i.e., p* de-
pends primarily on the clustering parameter d, and
very little on the habitat availability p, For large
enough values of gy, the population essentially per-
ceives the landscape as being undamaged at a local
level—there may be a reduced amount of habitat avail-
able, but what remains can be utilized as effectively as
habitat patches on an undamaged landscape. Inthelimit
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0

FiGc. 4. Equilibrium normalized patch occupancy p* (the
proportion of suitable sites that are occupied) as a function
of the proportion of suitable habitat p, (horizontal axis) and
the habitat clustering parameter gy, (vertical axis). The white
area in the lower-right portion of each picture represents in-
valid landscapes, that is, values of the parameters p, and gy,
which do not satisfy Inequality 8. (A) Predictions from the
mean-field approximation. Observe that p* depends only on
the amount of habitat available, p,, and not its spatial ar-
rangement . (B) Predictions from the pair approximation.
Observe that p* depends only on the habitat-clustering pa-
rameter gy, and not on the amount of habitat available, p,.
(C) Measurements from simulations. For each combination
of landscape parameters, five replicate simulations were per-
formed on independent 180 X 180 unit landscapes with the
given parameters as described in The population model, and
their results averaged. Observe that p* depends primarily on
the habitat-clustering parameter gy, and only very slightly
on the amount of habitat available, p,, as was also predicted
by the pair approximation.

as gy — 1, the behavior of the system will approach
that of a population on an undamaged (perfect) land-
scape. As (g, becomes smaller, the proportion of suit-
able sites that are occupied at equilibrium diminishes.
Thisisbecause habitat fragmentationis playing alarger
role—with smaller values of gy, suitable sites are more
often bordered by unsuitable sites. Thus, propagules
from occupied sites are often wasted by being dropped
on unsuitable sites.

The small region in the upper-left area of Fig. 4C
where the population does more poorly than expected
from gy, aone is due to problems generating the land-
scapes. Thelandscape-generation algorithm hastrouble
producing landscapes only when there is such a large
difference between p, and gy, i.e., when there is very
little habitat available (p, < 0.05) but very high clus-
tering (gy > 0.8). In this situation the algorithm ac-
tually produced landscapes with slightly less clustering
than was desired, which then reduced the normalized
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Fic. 5. Equilibrium normalized patch occupancy, p* (the
proportion of suitable sites that are occupied), as measured
from simulations (SIM), and predicted by the mean-field ap-
proximation (MFA) and pair approximation (PA), is plotted
against the chosen landscape parameter. The distribution of
habitat typesis: (A) random, i.e., p, = Qoo (B) fixed amount
of habitat available (p, = 0.3) with varying clustering qo;
and (C) fixed clustering (g, = 0.8) with varying amount p,
of habitat available. Simulations were performed as in Fig. 4C.

population density accordingly. For the vast majority
of the parameter space, the landscape-generation al-
gorithm converges rapidly and produces landscapes
with the desired structure.

Finally, Fig. 5 shows the results from simulations as
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well as predictions from the mean-field approximation
and pair approximation, for three types of landscapes:
landscapes with randomly distributed habitat types
(i.e., po = gq) and varying amounts of habitat available;
landscapes with a fixed amount of habitat available (p,
= 0.3) with varying degrees of clustering; and land-
scapes with a fixed amount of clustering (gy, = 0.8)
and varying amounts of habitat available. The random-
ly structured landscapes allow a comparison of the two
approximations when the spatial distribution of habitat
types matches the assumption of independence made
by the mean-field approximation. As shown in Fig. 5A,
on randomly structured landscapes, the pair approxi-
mation does not do significantly better than the mean-
field approximation; for example, both methods ac-
curately predict the critical value of p, = 0.2 above
which the population will persist. Thus, the extracom-
plexity of the pair-approximation model is not war-
ranted in situations where habitat types are randomly
distributed across the landscape. However, such situ-
ations are probably somewhat rare, as habitat types in
nature are often clustered (e.g., Smith et al. 1993). As
Fig. 5B and C show, when landscape structureisvaried
in a nonrandom way, the mean-field approximation
gives qualitatively incorrect behavior. Thus, the results
of theoretical studies based on mean-field approxi-
mations (e.g., Lande 1987, Nee and May 1992), would
likely not be applicable to situations where habitat
types are not randomly distributed. Also, note that even
for randomly distributed heterogeneities, both methods
of approximation (dashed lines) overestimate the nor-
malized patch-occupancy probability p as measured
from the simulations (solid line).

DiscussioN

I have explored the behavior of a simple discrete
stochastic single-species population model with local
dispersal on heterogeneous landscapes via spatially ex-
plicit simulations, spatially implicit analytic approxi-
mations (i.e., the mean-field approximation), and pair
approximations that incorporate a small amount of spa-
tial structure. The techniques of pair approximations
have proven useful for characterizing spatial correla-
tions in heterogeneous landscapes, as well as for gen-
erating new landscape maps with specified amounts of
two habitat types and their clustering. These generated
landscapes may be used for spatially explicit theoretical
studies that require a complete landscape map, as well
as for analytic approximations based on pair approxi-
mations as shown here. The pair-approximation model
directly incorporates information about spatial corre-
lations of habitat types, the population, and even cor-
relations between the two. Finally, note that the land-
scapes generated here can also be applied to the ex-
perimental design of field studies that manipulate hab-
itat in nonrandom ways (e.g., Collinge and Forman
1998, Dooley and Bowers 1998).
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It is also apparent from this investigation that the
classification of metapopulation or patch-occupancy
models as either spatially implicit or explicit (Hanski
and Simberloff 1997) isin fact not simply adichotomy.
Instead there is room between the two extremes for
models that incorporate varying degrees of spatial
structure, such as the simple local correlations used
here, or possibly even more spatial information (Hie-
beler 1997).

For the specific model studied here, | have shown
that with local dispersal and the characterization of
habitat as either suitable or unsuitable, only the habitat
clustering affects equilibrium normalized population
density, while the actual amount of habitat available
has no effect (assuming there is enough habitat avail-
able to avoid strong finite-size effects). Many natural
populations do exhibit very localized dispersal, al-
though in such situations there may be very rare long-
distance dispersal events (e.g., Kendrick and Walker
1995). The population behavior may begin to show
some dependence on p, (the amount of suitable habitat),
depending on the frequency of such long-distance dis-
persal events (unpublished manuscript). Similarly, the
behavior of the population may show some dependence
onp, if it were able to survivein the unsuitabl e habitat,
perhaps with reduced fecundity and increased mortal-
ity. However, the latter change would complicate the
pair approximation somewhat, requiring the addition
of a new state representing occupied type-1 habitat
sites, and seven independent equations would be need-
ed rather than just three.

The model may be modified in other ways as well.
In particular, neither the landscape-generation model
nor the population model depend strongly on the ge-
ometry of the lattice. For example, the exact sametech-
niques can be used to generate clustered landscapes on
hexagonal lattices where each site has six neighbors,
provided one measures the 2 X 1 block probabilities
by looking at all six neighbors of each site. Also, the
pair approximation of the population model on a hex-
agonal lattice would be the same (assuming an occu-
pied site sends propagules to each of its six neighbors
with probability ¢), except that the exponent in Eq. 15
defining vy would be 5 rather than 3. Equations 12-14
would be unchanged on a hexagonal lattice, as would
al of the conclusions | have drawn from the model.
The model may also bereformulated in continuoustime
with the same results, and in fact the simulation and
approximation models are all much simpler in contin-
uous time.

Although the concepts of pair approximations have
only been applied in this paper to a single-species pop-
ulation model on structured heterogeneous landscapes,
the potential applications are much broader. Of course
pair approximations are useful for bringing more re-
alism to theoretical studies that often assume a random
distribution of populations or habitat types on a land-
scape. Basic theoretical investigations of dispersal
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(e.g., Waser 1985, 1987), which involve propagules
moving around in a lattice until finding an empty site,
were developed based on the importance of the pro-
portion of empty sites. However, in fact they really
only depend on the conditional probability of seeing
an empty site when moving to the neighbor of the site
currently under consideration. Similarly, many of the
results of percolation theory (Plotnick and Gardner
1993, Bascompte and Solé 1996), such as the distri-
bution of patch sizes or number of patches, while tra-
ditionally formulated based on the probability of asite
being suitable (p,), should in fact be expressed in terms
of gy (the clustering parameter) since patches are sim-
ply collections of connected, adjacent, suitable sites.
In short, people have been thinking quite often about
local spatial correlations of the kind used here, even
though it was often not explicitly recognized. This is
because people have generally operated only within the
context of random distributions, i.e., situations where
Po = Joo, and then have thought in terms of p, for their
studies. Recognizing the important role of gy, allows
one to begin moving away from this oversimplified
assumption that there is no spatial structure in the
world.

Although the mean-field approximation failed to cap-
ture the qualitative behavior of the population model
on structured heterogeneous landscapes, it fared rea-
sonably well when the approximation’s inherent as-
sumption of randomly distributed habitat was met. In
situations where this is a reasonable assumption, the
extra effort of the pair approximation would not be
justified, unless one were specifically interested in
studying the spatial correlations of the population it-
self, which the mean-field approximation cannot do.
We see from Fig. 5A that on landscapes with randomly
distributed habitat, both approximation techniques
overestimate the normalized equilibrium population
density as measured from the explicit simulations. This
is usually the case for any kind of analytic approxi-
mation that is spatially implicit or only spatially ex-
plicit to a small degree, since it does not take into
account the full degree of clustering seen in the sim-
ulations. Underestimating the degree of clustering
causes the approximations to overestimate recruitment,
because in the simulations more propagules are being
wasted by falling on occupied sites than the approxi-
mation methods would predict, and thus recruitment to
empty suitable patches is reduced. The pair approxi-
mation does slightly better than the mean-field ap-
proximation even on random landscapes, since at |east
it does incorporate some amount of population clus-
tering.

Another factor that may lead to inaccuracies in the
approximation methods for some landscapes is the
emergence of spatial structure at much larger scales
than the 2 X 1 scale used to characterize or even gen-
erate them in this study. On some landscapes, for ex-
ample the one shown in Fig. 3, there are several regions
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consisting of small groups of roughly 4-10 suitable
sites, surrounded by an unsuitable boundary. Such re-
gions are small enough to be prone to local extinctions,
and they cannot be recolonized because of the as-
sumption w, = 1, i.e., complete unsuitability of type-
1 sites on the landscape. Yet these configurations occur
at a scale too large to be accurately predicted by the 2
X 1 pair approximation, an effect that likely contributes
to this method’'s overestimation of p. Incorporating
landscape effects and the spatial structure of popula-
tions at multiple spatial scales into a single analytic
approximation method remains one of the greatest dif-
ficulties of spatial models.

When studying a spatial system in ecology, the
choice of methodology strongly depends on the system.
For a system that exhibits local dispersal on a hetero-
geneous landscape where habitat types are not random-
ly distributed, the pair approximation is a practical the-
oretical technique. If dispersal occurs at a very large
scale relative to habitat heterogeneity, or if habitat
types are randomly distributed on the landscape, then
aspatially implicit mean-field approximation would be
more appropriate. In situations where dispersal occurs
at intermediate scales, spatially explicit simulations
may be required, or another modeling technique (Adler
and Nuernberger 1994, Hanski 1994a, b), although it
may also be possible to extend the pair approximations
to handle this case as well.

Finally, the techniques of pair approximations used
here capture some of the spatial structure of spatially
explicit models. These approximations are often slight-
ly too complex for complete analytic solution (though
in continuous time, analytic solutions are often more
feasible); however, they can generally be implemented
and solved numerically almost as efficiently asspatially
implicit models such as mean-field approximations or
spatially implicit metapopulations. Thus, they combine
some of the attractive features from both spatially im-
plicit and explicit methods, and may be useful for better
understanding a variety of spatial issues in ecology
such as dispersal and environmental heterogeneity.
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APPENDIX A
DERIVATION OF THE PAIR-APPROXIMATION EQUATIONS

First, there are nine probabilities P[ij] fori,j = 0,1, 2in
the pair approximation model. Assuming symmetry (i.e., P[ij]
= P[ji]), this is reduced to six probabilities: P[00], P[01],
P[02], P[11], P[12], and P[22]. Next, there are three con-
straints that should be recognized:

Pi1[11] = P[11] = p[11] = 1 + po(deo — 2) (A.2)

20 ZJ Plij] =1 (A.2)
Poall] = PJ1] = pr=1—-po

= P1+1[01] + Pt+1[11] + P1+1[21]- (A3)

Eq. A.1 follows from Eqg. 7, which is applicable because
P[11] = p[11], since the population cannot exist on siteswith
habitat type 1. Eq. A.3 follows from Eg. 16.

Under the assumptions of the pair approximation, the prob-
ability that a given site adjacent to an empty site is occupied
(in state 2) at time t is P[02|0*] = P[02]/P[0], where the
probability of seeing a single empty site P[0] is calculated
using Eq. 16. The probability that an empty site is colonized
by a given neighbor whose state is not explicitly known is
then $P[02]/P[0]. Thus the probability that a given empty
site does not get colonized by any of three neighbors whose
states are not known is given by vy = (1 — ¢$P[02]/P[0])3,
which will be useful shortly.

Consider now Eq. 14, which specifies P_,[02] in terms of
probabilities PJij] at the current time. There are four types
of blocks that could produce a [02] block at the next time;
they are [00], [02], [20], and [22]. (Any block with a site in
state 1 cannot produce a [02] block, because the landscape
is fixed.) Thus,

Pu.1[02] = P,[O0]P([00] - [02])
+ P[02]P([02] - [02])
+ P[20]P([20] — [02])
+ P[22]P([22] - [02)). (A.9)

The first term represents the contribution to P,,,[02] from
P[00]. Thus we need to compute P([00] - [02]), the prob-
ability that a [00] block at time t becomes a [02] block at
timet + 1. In order for thisto happen, two events must occur:
(a) the left site in the [00] block must remain in state O
(empty), and (b) the right site must change its state to 2
(occupied). The left site may remain in state O in one of two
ways: (al) it may not be colonized, or (a2) it may be colonized
but then become empty in the mortality phase of the same
time step. Because the left site could only be colonized by
three of its neighbors (since we know its neighbor to the right
isempty and thus cannot colonize theleft site), the probability
that it will not be colonized, i.e., the probability of event (al),

is simply y. Then, since the left site will be colonized with
probability 1 — v, we multiply by the mortality probability
o to see that the probability of event (a2) is(1 — v)po. Events
(al) and (a2) are disjoint, so by adding their probabilities,
one obtains the probability of event (a), i.e., the event that
the left site remains in state 0. Now consider event (b): in
order for the right site in the [00] block to change its state
to 2, it must be colonized (with probability 1 — +y), and survive
mortality (with probability 1 — p); multiplying these two
independent probabilities gives the probability of event (b).
Finally, events (a) and (b) are independent, so their proba-
bilities may be multiplied to obtain P([00] - [02]) = (y +
(1 = M) = (A ~ o).

The next term in Eq. A.4 is P[02]P([02] - [02]). We pro-
ceed as before: for a[02] block at timet to remain a[02] block
at timet + 1, two events must occur: (a) the left site must
remain in state 0, and (b) the right site must remain in state 2.
Event (a) may occur in one of two disjoint ways: (al) the site
is not colonized, or (a2) it is colonized and then immediately
dies. This time, the left site may be colonized by at least one
of its three unknown neighbors, with probability 1 — vy, or by
its occupied neighbor to the right, with probability ¢. Thusthe
probability that the left site is not colonized, event (al), isy(1
— ). The probability that the left site is colonized is then
1 — y(1 - ¢), giving the probability of event (a2) as (1 —
v(1 — $))po- Again, the probabilities of events (al) and (a2)
sum to give the probability of event (a). The probability of
event (b) is simply 1 — p,, the probability that the right site
survives mortality and hence remains in state 2. Again, mul-
tiplying the probabilities of events (a) and (b) gives
P([02] [02]) = (v(1 = &) + (1 = v(1 = &)ro)(L — o).

One may proceed in this fashion to fill in the coefficients
of all of the PJ[ij] termsin Eq. A.4, as well as coefficientsin
similar equations for P_,[00] and P.,[01]. The results are
the following three equations:

P1[00] = PO0](y + (1 — ¥)io)?
+ 2P [02](v(1 =) + (1 = v(1 = $)ro)ko

+ P [22] 3 (A.5)
Pua[01] = POL](y + (1 = Vo) + Pi[21]po (A.6)
Pual02] = PLOOJ(y + (1 = Vo)1 = V)A — o)
+ P02)(v(1 — &)
1=y = PNl — o)
+ P20 po(1 — v(1 — &)1 — o)
+ P22] (1 — o). (A.7)

In Eg. A.5, the coefficients of the P[02] and P[20] terms
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are the same; thus under the symmetry assumption
P[02] = P[20] they may be combined—hence the factor of
2 on the P[02] term in that equation. The P[02] and P[20]
terms were written separately in Eq. A.7 for clarity, since
they had different coefficients.

We may then use Egs. A.1 and A.3 to obtain

Pua[12] = Pa[1] — Pyy[10] — P, [11]
(1 - po) - Pt+1[01] - p[ll]

= Po(1 — Goo) — Pr.4[01]
and Egs. A.1, A.2, and A.8 to get
Pea[22] = 1 — P, [00] — Py,,[11]

= 2P, 4[01] — 2P, ,[02] — 2P, ,[12]

(A.8)

1 - P.4[00] — 2P,[02] — py,
= 2po(1 — Goo)

= Poloo — Pe.2[00] — 2P,,[02]. (A.9)

Finally, one can use Egs. A.8 and A.9 to rewrite Egs. A.5—
A.7 in terms of only P[00], P[01], and P[02] (as well asthe
parameters &, po, Po, @and Qo). The results are Eqs. 12-14.
Note that Ives et al. (1998) follow a similar approach to
develop a pair-approximation model of a population on a
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structured heterogeneous landscape. In their model, however,
diagonally adjacent sites are considered adjacent for both
dispersal and characterizations of landscape heterogeneities.
However, their pair-approximation model contains only two
equations, rather than the three used here. This is because
they made the further simplifying assumption that the con-
ditional probability that a randomly chosen neighbor of an
occupied suitable site will be suitable (this probability is
(P[0O2] + P[22])/P[2] in the notation used in this paper) sim-
ply equals the conditional probability that arandomly chosen
neighbor of a suitable site is also suitable (i.e., (y). This
assumption basically neglectsthe clustering of the population,
or spatial correlations between the population and landscape.
This assumption, in my notation, becomes (P[02] +
P[22])/P[2] = 0y, Which together with Egs. 16, A.8, and A.9
leads to the relation

P[O1] = %)(P[OO] + P[02]).

This may then be used to eliminate P[01] from the definition
of vy in Eq. 15, and thus eliminate P[01] entirely from Egs.
12 and 14. The resulting two modified Egs. 12 and 14 then
serve as the compl ete pair-approximation model. Theanalytic
model of lves et al. (1998) is further slightly simplified be-
cause it does not consider the possibility that colonization
and extinction can both occur at a single site during a single
time step.

APPENDIX B
PROOF THAT p* IN THE PAIR APPROXIMATION DOES NOT DEPEND ON Py

Using Egs. A.8 and A.9 together with Eq. 16, one can
obtain

P[2] = P[02] + P[12] + P[22]
= p[02] + po(1 — doo) — P[01] + Polloo
~ P,[00] — 2P,[02]
= p, — P[00] — P[01] — P,[02]
P[0] = P[00] + P,[01] + P,[02].

Using these in Eq. 11 and simplifying, we obtain

P,[00] + P,[01] + P[02]

Po &0

py=1-—

Next, consider the rescaled variables P,/[00] = P,[00]/p,,
P/[01] = P[01]/p,, and P/[02] = P[02]/p,. If werewrite Egs.
12-14 using these rescaled variables, they become:

P11[00] = P{[O0J{v*(1 = mo)® + 2yio(l — pol}
+ 2P{[02] ypo(1 = )L = po) + Ro®Too
P1[01] = P{[01]v(1 — po) + po(l — Coo)
P2[02] = P{[O0J{v(1 — 2mo)(L — o) — ¥*(1 — o)}
+ P02Iv (1 = 2p0)(1 — po)(1 — &)
+ oL —1o)Too

where
_(y- bP[02] ’
v ( P,[00] + P,[01] + P‘[02]>
(4 $P;[02] ’
B ( P/[00] + P;[01] + P{[OZ]) :

That is, we seethat P,/[00], P,/[01], and P,[02] do not depend
on p,. Finaly, since by Eqg. B.1, p,=1— (P/[00] +
P/[01] + P/[02]), we see that p, also does not depend on p,.
Thus, the behavior of the pair-approximation model does not
depend on the amount of suitable habitat available, but only
its clustering parameter qq,, i.€., exactly the opposite behavior
of the mean-field approximation.

APPENDIX C
The computer source code (written in C) used to generate these landscapes is available in ESA’'s Electronic Data Archives:

Ecological Archives E081-019.



