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AN EXISTENCE THEOREM FOR PERIODIC SOLUTIONS OF A
PARABOLIC BOUNDARY VALUE PROBLEM OF THE
SECOND KIND*

S. J. FARLOWY}

1. Introduction. It is proved that: if the coefficients of a second order
parabolic equation in an infinite space time cylinder D X (— », «),
the nonhomogeneous term, and the mixed data on the boundary of
D X (— o, ») are periodic in ¢ with period T, then there exists a unique
solution in D X (—, «) which is also periodic in ¢ with period T
(the Dirichlet problem was solved by Shmulev [2]).

2. Results. The uniqueness and periodicity of the solutions can be proven
a priori without using all the conditions needed for existence. The following
theorems use the notation found in [1].

THEOREM 1. Letu = u(z,t) be a bounded solution of

Iﬂ,t:f(x,t), (x7t)EDX(_°°’°°))

" g_:'l’ =+ ,3(33, t)u(xy t) = g(xy t)’ (113, t) €dD X (—oo, 00),

and assume that
(i) L 4s uniformly parabolic in D X (—=», »),
(li) c(w, t) = Ofw (x, t) € D X (—00, °°)’
(i) Bz, ) < by < O for (z,t) € 8D X (=, ),
(iv) 9D belongs to Crx .
If conditions (i)-(iv) hold, then there exists at most one solution, u = u(z,t),
to the problem P.
Proof. If we let u: , u2 be two bounded solutions of P, then using a theorem
from [1, p. 147] one can show the a priori estimate

| e'ui(z, t) — u2(, ] = Ke' sup | w(z, *) — us(z, t°) |
x€D

for all (z,t) € D X (—», ») and ¢* an arbitrary negative number. Since
u1 , us were assumed bounded, we can conclude that u, = s .

TaEoREM 2. If problem P possesses a unique solution u = u(z, t) and if
the functions aij, bi, ¢, f, B and g are periodic in t with period T, then the
solution u s periodic in t with period T'.
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Proof. It is an easy matter to observe that u(x, t + T') satisfies problem
P and, hence, by Theorem 1, u(x,t) = u(z,t + T).

Trareorem 3 (Existence theorem for P). The boundary value problem P
has a unique bounded solution u = wu(x, t) which s periodic in t with period
T provided:

(i) L s uniformly parabolic in D X (— o, ®);
(ii) the coefficients of L and f are uniformly Hdélder continuous in the
first variable and uniformly continuous in the second variable;
(iii) aD belongs to class Cip ;
(iv) Band g are continuous on 0D X (— », ©);
(V) c(x,t)gOfor(x,t)EDX(—oo,oo),
(vi) B(z,t) < by <Ofor (x,t) € 0D X (— o, »);

(vil) the functions ai;, b:, ¢, f, B and g are periodic in t with period T'.

Proof. The proof uses the same technique used by Shmulev [2]. Consider
a family of ¢nitial boundary value problems:

" = f(z, t), (€,8) € D X (ta, ],
P.: aa_i,m + ﬁ(.’lf, t)u"(x’ t) = g(x’ t), (x, t) € 9D X (i, ) t*]:

u*(z, t,) = 0, r € D)

where t* is an arbitrary positive number. Nothing is known as to the con-
vergence of {u"} on D X (— o, ). However, given any a < 0, we can
find a subsequence of {%#"} which converges uniformly on D X (a, «) to a
function 4 = wu(x, t) which is a solution of P. To find this function u
= u(zx, t) we first use the a priori estimate [1, p. 147] to obtain the follow-
ing estimate on D X [t,, ):

|u"(z,1) | = K (sup [f| +sup|g|) = Co < e,

the supremum of | f | being taken over D X (— , ) and that of | g | over
dD X (— o, »). The constant K depends only on L, 8 and D. Next we
pick integers ¢ > p > 0 and observe that the difference 4™ = u? — u*
satisfies

Lu®? = 0, (.’1), t) € DX (tp °°)’

!

’ + B(z, t)u™(z, t)
dv

O’ (x’ t) E aD X (tp’ OO)’

w'(z, t,) = u'(x, tp), z € D.

Making the transformation »”? = e‘u”?, we find that »”'? satisfies

Lo — ™9 = 0, (z,t) € DX (t, ),
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™!
- B(z, )" (x,t) =0, (x,t) €D X (L, ),

"z, t) = eut U (x, t,)
= ez, t,), z € D.
Again applying the a priori estimate [1], we estimate v*?on D X [t,, ©) by
| v*9(z, t) | < Ke* sup | u(z, tp) |-
But we have already seen that the elements of the sequence {%"} are bounded
by Co, so that | v”%(z, t) | £ Ke™Coon D X [t,, =), where K and C,

depend only on L, 8, f, g and D. Substituting u?%(z, t) = ¢ %%z, 1),
we have

|u™%(z, 8) | = KCoe™™"

for (z,t) € D X [t,, »). From this it follows that on every subset
D X [a, ) the sequence {u"} is a uniform Cauchy sequence of continuous
functions.

Defining u(z, t) to be the pointwise limit of {#"}, we now show that
u(zx, t) satisfies P. To this end suppose that v(z, t) is a function that satis-
fies

Ly = f(.’l?, t), (.’ZJ, t) €D X (t*, °°),
gi;+ B(z, yolz, t) = g(z,t), (x,t) € 8D X (£, ),

o(e, t*) = ulz, t*), z € D,

where ¢* is an arbitrary negative number. Choose n sufficiently large so that
tn < t*. Letting w* = v — 4", we find that

L'w" = 0, (x, t) 6 D X (t*’ °°),
S+ B, 00, 1) = 0, (z,1) € aD X (&%, =),

w(z, %) = u(z, *) — u"(z, ¥), z € D.
Applying the a priori estimate again, we have
|v(z, t) — u™(,t) | £ K sup | u(z, ) — u(z, t*) |
x€eD
for (z,t) € D X [t*, ©) and K = K(L, 8, D). From this estimate, we see

that the sequence {u"} converges to » uniformly on D X [t,* «), and since
{u"} also converges to % in the same region, we conclude that v = ». That
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is, u satisfies

L = f(z, 1), (z,t) € D X ({*, )

Since ¢* was an arbitrary negative number, we conclude that u satisfies P.
Finally theuniqueness and periodicity assertions follow from Theorems 1 and
2, respectively. ‘
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