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Abstract

We study the distribution of principal ideals generated by irreducible elements in an algebraic number
field.
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1. Introduction

In an abstract algebra course, students learn that the concepts of prime and irreducible
elements do not coincide in an integral domain without unique factorization. Usu-
ally, various examples are given inZ[√−5], for instance, showing the existence of
irreducibles which are not prime. Of course, as every student knows any prime is
irreducible and so generally there are more irreducibles than primes.

This difference leads naturally to two questions. First, can one give a characteriza-
tion of irreducibles in familiar integral domains where unique factorization need not
hold, such as the ring of integers in an algebraic number field? Second, how are the
irreducibles distributed, again in an algebraic number field?

The problem of characterizing irreducibles involves, among many challenges, a
good characterization of all the prime ideals in any given ideal class of the ideal class
group of the field. This has a particularly nice solution when the Hilbert class field
of the number field is an abelian extension of the field of rational numbersQ, for
class field theory shows us that the solution involves congruences, modulo certain
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integers depending on only the field, for the rational primes contained in the prime
ideals. (As a minor aside, we give a characterization of the irreducibles and primes in
two imaginary quadratic number fields of class number two in the last section of this
paper.) In other cases such a satisfactory characterization is not known and probably
even nonexistent.

In this note, we study instead the distribution of irreducibles. First, we give a little
background. LetK be an algebraic number field and denote byM.x/ the number
of nonassociate irreducible elementsÞ with |NK=Q.Þ/| ≤ x. In the 1960’s, Ŕemond,
[11], showed that

M.x/ ∼ C
x

log x
.log logx/D−1; asx → ∞;

whereC is a positive constant not explicitly given andD is the Davenport constant
which is a positive integer depending on only the structure of the ideal class group ofK .
Now, if we let P.x/ denote the number of nonassociate primes³ with |NK=Q.³/| ≤ x,
then by a classical density result

P.x/ ∼ 1

h

x

log x
;

whereh is the class number of the field, that is, the order of the ideal class group. If
h > 1 (soD > 1, see Section2), then there are ‘many more’ irreducibles than primes.
If h = 1, however, then the ring of integers is a unique factorization domain and hence
the irreducibles and primes coincide. This is consistent with the estimates above once
we observe that in this case,C = 1 andD = 1; see the next section for more on these
constants.

Subsequently, Kaczorowski, [6], gave a major extension of Rémond’s result, which
we state here in simplified form:

M.x/ = x

log x

(
D−1∑
j =0

mj .log logx/ j

)
+ O

(
x

log2 x
.log logx/c

)
;

as x → ∞, for some constantc > 0 and complex numbersmj . In particular,
mD−1 = C the coefficient in Ŕemond’s estimate. As in Ŕemond’s case, the constants
depend onK but are not explicitly given.

Later, Halter-Koch and M̈uller in joint work [5] showed, among many results, how
to determine the constantC and as a result showed that it depends on only the class
group ofK .

This result prompted us to explore the dependence of some of the other coefficients
in Kaczorowski’s estimate on the arithmetic ofK . In particular, we considermD−2 and
give an explicit expression for this coefficient. We then apply this to the special case
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of a number field with cyclic class group in which case we find thatmD−2 contains
explicit arithmetic information about the field and some of the subfields of its Hilbert
class field. (We chose the case of cyclic class group due to the messy combinatorical
arguments in the general case. It would still perhaps be of interest to see what
happens in general.) Finally, we compute—more precisely, approximate—mD−2 for
two imaginary quadratic number fields with class number two. Indeed, this calculation
shows that more than just properties of the class group figure into the makeup ofmD−2:

2. A Dirichlet series associated with irreducibles

Let K be an algebraic number field, that is, a finite extension of the rational number
field, Q, and letOK denote its ring of integers. We denote byN.x/ the norm of
an elementx from K to Q. Also, we denote byNa the norm of an ideala of OK .
Furthermore, let Cl= Cl.K / denote the class group ofK and h = hK the class
number, that is, the order of Cl.K /.

In studying the distribution of the irreducibles, we introduce the following function.

DEFINITION 1. ¼.s/ = ∑
.Þ/;Þ irred. |N.Þ/|−s, wheres is a complex number with real

part,¦ > 1.

The sum runs over the principal ideals generated by irreducible elements ofOK .
We obviously do not wish to count all associates of an irreducible since there are
infinitely many when the unit group is infinite, that is, anytimeK is notQ or an
imaginary quadratic number field.

Ultimately, we shall be interested in the ‘summatory’ function given by

DEFINITION 2. M.x/ = ∑
.Þ/;Þ irred.;|N.Þ/|≤x 1, wherex is any positive real number.

We shall first determine properties of¼.s/ and then use a well-known Tauberian
theorem to glean information about the distribution ofM.x/.

To this end, consider the following. Write Cl= {c1 = 1; c2; : : : ; ch}.

DEFINITION 3. For each positive integerm, let

Dm =
{

k = .k1; : : : ; kh/ ∈ Nh
0 :

h∏
j =1

c
ki
j

min= 1; k1 + · · · + kh = m

}
;

where
∏

c
ki

i
min= 1 means that

∏
c

ki

i = 1 and if
∏

c
l i

i = 1 for somel i such that
0 ≤ l i ≤ ki for i = 1; : : : ; h, thenl i = 0 for all i or l i = ki for all i . (HereN0 denotes
the set of nonnegative integers.)
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Notice that
min= guarantees that a product of elements is 1 but no nontrivial subproduct

is 1. Hence the product gives a ‘minimal’ representation of 1.
Later on it will be more convenient to think of the elements ofDm as functions in

the usual way; namely,

Dm =
{
� : Cl → N0

∣∣∣ ∏
c∈Cl

c�.c/
min= 1;

∑
c

�.c/ = m

}
:

DEFINITION 4. The Davenport constant ofCl, denoted byD or D.Cl/, is the largest
positive integerm such thatDm is nonempty.

The Davenport constant is defined as above for any finite abelian group. In general,
the relation between the Davenport constant and the structure of the group is not
known. On the other hand, it is well known (and easy to prove) that the Davenport
constant is no larger than the order of the group.

We now have the following proposition which gives a connection between irre-
ducibles and prime ideals. First, we denote the set of nonzero prime ideals ofOK

byP.

PROPOSITION2.1. For any complexs with ¦ > 1 and where
∑

ai
is defined to be1

wheneverki = 0,

¼.s/ =
D∑

m=1

∑
k∈Dm

h∏
i =1

∑
ai∃pi 1;:::;piki ∈P∩ci

ai =pi 1···piki

N.ai /
−s:

PROOF. For k ∈ Dm, define

Ak = {
a : a = a1 · · · ah; ai = pi 1 · · · piki ; somepi j ∈P ∩ ci

}
;

whereai = 1, if ki = 0. Now letA = ⋃
Ak where the union is over allk in

⋃
mDm.

By the uniqueness of the factorization of ideals into prime ideals, we see that this
union is disjoint. Moreover, by the multiplicativity of the norms, we have

D∑
m=1

∑
k∈Dm

h∏
i =1

∑
ai

Na−s
i =

∑
a∈A

Na−s;

whereai are as above in the definition ofAk. Now notice that ifa ∈ A , thena ∈ Ak

for somek ∈ Dm. Thus the ideal class[a] containinga satisfies

[a] =
h∏

i =1

ci
ki

min= 1;
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by definition ofDm. Hencea = .Þ/ for some nonzero, nonunit integerÞ in K . But
notice thatÞ must be irreducible for otherwise[a] = ∏h

i =1 ci
ki = 1, would not be a

minimal representation of 1.
Conversely, ifÞ is irreducible, then.Þ/ ∈ Ak for somek; namely,

.Þ/ =
h∏

i =1

ki∏
j =1

pi j ;

for someki ∈ N0 andpi j ∈P ∩ ci :

Next, we examine the right-hand sum in the proposition above. To this end we
define the following family of polynomials.

DEFINITION 5. Let k be a positive integer andz1; : : : ; zk independent variables.
Then

Pk.z/ = Pk.z1; : : : ; zk/ =
∑

.¹1;:::;¹k/∈Nk
0∑

j ¹ j =k

1

¹1! · · · ¹k! 1¹1 · · · k¹k
z¹1

1 · · · z¹k

k :

Moreover, letP0.z/ = 1.

PROPOSITION2.2. Let k be a positive integer andx1; x2; x3; : : : be a sequence of
independent variables. Moreover, forj = 1; : : : ; k, let sj = ∑∞

i =1 x j
i . Then∑

.n1;:::;nk/∈Nk

n1≤···≤nk

xn1 · · · xnk = Pk.s1; : : : ; sk/:

PROOF. First we introduce some notation. Letx n = xn1 · · · xnk for any n =
.n1; : : : ; nk/ ∈ Nk: Let T = {n ∈ Nk : n1 ≤ · · · ≤ nk}. Also, let Sk be the symmetric
group on{1; : : : ; k}; for ¦ ∈ Sk, let ¦n = .n¦.n1/; : : : ; n¦.nk//. Next, letC = C.¦ / be
the conjugacy class of¦ in Sk, that is,C.¦ / = { ¦ −1 :  ∈ Sk}. Let

¦ =
k∏

j =1

� j 1 · · · � j ¹ j

be a factorization of¦ into disjoint cycles, where¹ j ∈ N0 and for eachj and
i = 1; : : : ; ¹ j , the permutations� j i are the distinctj -cycles, say� j i = .aji 1 · · · aji j /

with ajil ∈ {1; : : : ; k}; and with the convention that 1-cycles are included so that⋃
j;i {aji 1; : : : ; aji j } = {1; : : : ; k}. Recall that− ∈ C.¦ / if and only if − has the same

type of cycle decomposition, that is, if

− =
k∏

j =1

�′
j 1 · · · �′

j ¹′
j
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into disjoint cycles with the same conventions as above, then¹ ′
j = ¹ j for j = 1; : : : ; k;

(see, for example [2]). Notice then that a conjugacy class inSk is determined uniquely
by ak-tuple,.¹1; : : : ; ¹k/ ∈ Nk

0 with
∑k

j =1 j ¹ j = k. Any permutation in the conjugacy
class has a cycle decomposition determined by the¹ j ’s as above. Moreover, recall
that

#C.¦ / = k!
¹1! · · · ¹k!1¹1 · · · k¹k

;

again see [2]. Furthermore, recall that the cardinality of the orbit ofn under Sk,
Skn = {�n : � ∈ Sk}, is equal to|Sk|=|Sk.n/| whereSk.n/ = {� ∈ Sk : �n = n}, the
stabilizer subgroup ofn: Moreover, ifm ∈ Skn, then the stabilizer subgroups,Sk.m/
andSk.n/, are conjugate and thus have the same cardinality.

Now for the proof: Notice that

1

k!
∑
¦∈Sk

∑
m∈Nk

¦m=m

xm = 1

k!
∑

C

∑
¦∈C

∑
m∈Nk

¦m=m

x m;

where
∑

C is the sum over the conjugacy classes ofSk. Now notice that if we
write ¦ = ∏k

j =1 � j 1 · · · � j ¹ j as above, then
∑

m∈Nk;¦m=m x m = s¹1
1 · · · s¹k

k , which is
independent of the choice of¦ ∈ C. Hence

1

k!
∑

C

∑
¦∈C

∑
m∈Nk

¦m=m

x m = 1

k!
∑

C

|C|
∑
m∈Nk

¦m=m

x m

= 1

k!
∑

.¹1;:::;¹k/∈Nk
0∑

j ¹ j =k

k!
¹1! · · · ¹k!1¹1 · · · k¹k

s¹1
1 · · · s¹k

k = Pk.s1; ·; sk/:

On the other hand, ∑
n∈T

x n =
∑
n∈T

1

|Skn|
∑

m∈Skn

x m;

sincexm = xn for anym ∈ Skn. Hence∑
n∈T

x n =
∑
m∈Nk

∑
n∈T

m∈Skn

1

|Skn| x m = 1

k!
∑
m∈Nk

∑
n∈T

m∈Skn

|Sk.n/| x m

= 1

k!
∑
m∈Nk

∑
n∈T

m∈Skn

|Sk.m/|x m = 1

k!
∑
m∈Nk

∑
n∈T

m∈Skn

∑
¦∈Sk.m/

x m

= 1

k!
∑
m∈Nk

∑
¦∈Sk.m/

x m

∑
n∈T

m∈Skn

1:
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But
∑

n∈T; m∈Skn 1 = 1, since only one permutation ofm can belong toT . Therefore,

∑
n∈T

x n = 1

k!
∑
m∈Nk

∑
¦∈Sk
¦m=m

x m = Pk.s1; : : : ; sk/;

from above, as desired.

PROPOSITION2.3. Let k be a nonnegative integer andc any class inCl. Then∑
a∃p1;:::;pk∈P∩c

a=p1···pk

N.a/−s = Pk.z/;

wherezj = ∑
p∈P∩c Np− js, for all Re.s/ = ¦ > 1.

PROOF. For k = 0, both sides are equal to 1, for the left-hand side consists of one
term,a = OK which has norm equal to 1.

Assumek > 0. WriteP ∩ c = {pn : n ∈ N}. For anyn ∈ N, let xn = Np−s
n .

Then the proposition follows directly from Proposition2.2, once we observe thatN
is multiplicative and all series involved converge absolutely, since¦ > 1.

We now have the following useful corollary to Proposition2.3.

COROLLARY 2.4.

¼.s/ =
∑

.Þ/; Þ irred.

|N.Þ/|−s =
D∑

m=1

∑
k∈Dm

h∏
i =1

Pki .zi 1; : : : ; ziki /;

wherezi j = ∑
pi ∈P∩ci

Np
− js
i .

For the next proposition, writezi 1 = ∑
pi ∈P∩ci

Np−s
i = l + gi , where l =

.1=h/ log.1=.s − 1//, and gi = gi .s/. It is well known thatgi .s/ is regular at
s = 1. We then have

PROPOSITION2.5. ¼.s/ = ∑D
¼=0 c¼l¼, wherec¼ = ∑D

m=max.1;¼/

∑
k∈Dm

ak;¼, where
if k = .k1; : : : ; kh/, then

ak;¼ =
k1∑

¼1=0

· · ·
kh∑

¼h=0
¼1+···+¼h=¼

h∏
i =1

bki ;¼i ; with bki ;¼i =
ki∑

¹i 1=¼i

g¹i 1−¼i

i

¼i ! .¹i 1 − ¼i /!²ki ;¹i 1;
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where

²ki ;¹i 1 =
∑

.¹i 2;:::;¹iki /∈N
ki −1
0∑

j ¹i j =ki −¹i 1

1

¹i 2! · · · ¹iki !2¹i 2 · · · k
¹iki

i

z¹i 2
i 2 · · · z

¹iki

iki
;

if ki > 1, and we define²0;0 = 1, ²1;1 = 1; and²1;0 = 0.

PROOF. First use the definition of the polynomialsPk.z/ to expand¼.s/ in Propo-
sition 2.3, where the indices of summation are¹i j for i = 1; : : : ; h and j = 1; : : : ; ki .
Hence

¼.s/ =
D∑

m=1

∑
.k1;:::;kh/∈Dm

h∏
i =1

∑
.¹i 1;:::;¹iki /∑

j ¹i j =ki

1

¹i 1! · · · ¹iki !1¹i 1 · · · k!¹iki
.l + gi /

¹i 1z2i
¹i 2 · · · zki i

¹iki ;

where
∑

.¹i 1;:::;¹iki /
· · · = 1, if ki = 0. Now in the right-hand most sum above, sum over

the¹i 1 first in which case we get∑
.¹i 1;:::;¹iki /∑

j ¹i j =ki

1

¹i 1! · · · ¹iki !1¹i 1 · · · k!¹iki
.l + gi /

¹i 1z2i
¹i 2 · · · zki i

¹iki =
ki∑

¹i 1=0

.l + gi /
¹i 1

¹i 1! ²ki ;¹i 1;

with ² as defined in the statement of the proposition. Next, expandz¹i 1
i 1 = .l + gi /

¹i 1

as
¹i 1∑
¼i =0

(
¹i 1

¼i

)
l¼i g¹i 1−¼i

i :

Then
ki∑

¹i 1=0

.l + gi /
¹i 1

¹i 1! ²ki ;¹i 1 =
ki∑

¹i 1=0

1

¹i 1!
¹i 1∑
¼i =0

(
¹i 1

¼i

)
g¹i 1−¼i

i ²ki ;¹i 1l
¼i =

ki∑
¼i =0

bki ;¼i l
¼i ;

where theb are defined as above. But then
h∏

i =1

ki∑
¼i =0

bki ;¼i l
¼i =

k1∑
¼1=0

· · ·
kh∑

¼h=0

h∏
i =1

bki ;¼i l
¼1+···+¼h =

m∑
¼=0

ak;¼l¼;

with thea as defined above.
But now

∑
k∈Dm

∑m
¼=0 ak;¼l¼ = ∑m

¼=0

∑
k∈Dm

ak;¼l¼. Hence

¼.s/ =
D∑

m=1

m∑
¼=0

∑
k∈Dm

ak;¼l¼ =
D∑
¼=0

 D∑
m=max.1;¼/

∑
k∈Dm

ak;¼

 l¼;

as desired.



[9] Distribution of irreducibles 377

Now we rewrite theak;¼ in Proposition2.5 in a form more convenient for winning
an explicit formula forc¼ for ‘large’ ¼.

COROLLARY 2.6. ¼.s/ = ∑D
¼=0 c¼ l¼, wherec¼ = ∑D−¼

¹=max.1;¼/−¼
∑

k∈D¼+¹ ak;¼, with

ak;¼ =
k1∑
¹1=0

· · ·
kh∑
¹h=0

¹1+···+¹h=¹

h∏
i =1

1

ki !
¹i∑
½i =0

ki !
.¹i − ½i /!.ki − ¹i /!g¹i −½i

i ²ki ;ki −½i ;

where(as above)

²ki ;ki −½i =
∑

.¹i 2;:::;¹iki
/∈Nki −1

0∑
j ¹i j =½i

1

¹i 2! · · · ¹iki ! 2¹i 2 · · · k
¹iki
i

z¹i 2
i 2 · · · z

¹iki

iki
:

PROOF. (Sketch) In Propostion2.5change variables as follows: let¹ = m−¼, let
¹i = ki − ¼i , and let½i = ki − ¹i 1.

From this corollary we extract the following result.

COROLLARY 2.7. Let¼.s/ = ∑D
¼=0 c¼l¼. Then

(i) cD = ∑
k∈DD

∏h
i =1.1=ki !/.

(ii) cD−1 = ∑
k∈DD−1

∏h
i =1.1=ki !/+∑

k∈DD

∏h
i =1.1=ki !/∑h

j =1 kj gj .
(iii) If D ≥ 2, then

cD−2 =
∑

k∈DD−2

h∏
i =1

1

ki ! +
∑

k∈DD−1

h∏
i =1

1

ki !
h∑

j =1

kj gj

+
∑
k∈DD

h∏
i =1

1

ki !

( ∑
1≤ j1< j2≤h

kj1kj2gj1gj2 +
h∑

j =1

kj .kj − 1/

(
g2

j

2
+ zj 2

2

))
:

The proof is a straightforward application of the previous corollary.
We further obtain the following expressions for¼.s/ for some fields with small

class number.

COROLLARY 2.8. (i) SupposeD = 1 whenceh = 1. Then¼.s/ = l + g1.
(ii) If D = 2 soh = 2, sayCl = {1 = c1; c2}, then

¼.s/ = 1

2
l 2 + .1 + g2/l +

(
g1 + 1

2
g2

2 + 1

2
z22

)
:

PROOF. In light of the formulas for thec¼ above, it suffices to computeDm for each
of the groups listed.
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Let Cl = {1 = c1}. Then we have only one minimal representation of 1, namely
1

min= 1, implying thatD1 = {1}. Using this with the previous corollary yields (i).
Now let Cl = {1 = c1; a = c2}. Then we have two minimal representations

of 1, namely, 1
min= 1, andaa

min= 1 implying thatD1 = {.1; 0/} andD2 = {.0; 2/};
respectively. This yields (ii).

3. The summatory function M (x)

Having established formal properties of the Dirichlet series¼.s/, we now use well-
known results relating a Dirichlet series to its associated summatory function as in [6].
We present the following weaker form of Kaczorowski’s ‘Main Lemma’ given in [6],
which will be sufficiently strong for our purposes.

Let f .s/ = ∑∞
n=1 ann−s be a Dirichlet series wheres = ¦ + i t with an; ¦; t real

numbers andan ≥ 0.
As in [6] we have the following definition.

DEFINITION 6. We letA be the set of those Dirichlet seriesf as above satisfying
the following three additional properties:

(i) For all x; y ∈ R such that 1≤ x < y,∑
x≤n≤y

an ≤ .y − x/ logc1 y + O.y� /;

for somec1 > 0, � < 1 where the constants depend onf only.
(ii) There exists a nonnegative integerk and functionsgj .s/ for j = 0; : : : ; k,

such that

f .s/ =
k∑

j =0

gj .s/ log j

(
1

s − 1

)
;

for ¦ > 1 and such thatgk.1/ 6= 0 and gj .s/ is regular for¦ > 1 and can be
analytically continued to a regular function in the regionR given by

R =
{

s = ¦ + i t : ¦ > 1 − c2

log.|t | + 2/

}
for somec2 > 0.

(iii) In the regionR, |gj .s/| � logc3.|t | + 3/, for somec3 > 0.

PROPOSITION3.1 (Corollary to Kaczorowski’s Main Lemma).Let

f .s/ =
∞∑

n=1

ann−s
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be a Dirichlet series in classA as defined above. LetS.x/ = ∑
n≤x an be the

summatory function associated withf .s/. Then for allž > 0 and all x ≥ ee,

S.x/ = x

log x

(
k−1∑
j =0

ej .log logx/ j

)
+ O

(
x

log2−ž x

)
;

asx → ∞, where theej are complex numbers given by

ej =
k∑
¹= j

¹!
j !g¹.1/I¹− j ; with Im = .−1/m

m!
1

2³ i

∫
C

ez.log z/m dz;

whereC is the path of integration consisting of the segment.−∞;−1] on the lower
side of the real axis (so that the argument oflog z is −³ ), the circumference of the
unit circle taken counter-clockwise, and the segment[−1;−∞/ on the upper side of
the real axis.

The proof may be found in [6] where we take Case I andq = 0 in the Main Lemma.

LEMMA 3.2. Let t be any positive real number witht < 1. Then

(a) I0 = 0,
(b)

∑∞
m=1 tm−1 Im = exp

(
 t + ∑∞

n=2.−1/n−1�.n/tn=n
)
, where = 0:577: : : is

Euler’s constant,
(c) I1 = 1 and I2 =  .

PROOF. Part (a) follows sinceI0 = ∫
C

ez dz = 0.
With respect to Part (b), consider the formal sum

∞∑
m=0

tm Im = 1

2³ i

∫
C

eze−t logz dz = 1

2³ i

∫
C

ezz−t dz = 1

0.t/
:

But then sinceI0 = 0, we have

∞∑
m=1

tm−1 Im = 1

t0.t/
= exp

(
 t +

∞∑
n=2

.−1/n−1�.n/
tn

n

)
;

by [13].
Part (c) follows immediately from (b).

COROLLARY 3.3. Let ej be defined as in Proposition3.1. Then

(i) if k ≥ 1, ek−1 = k gk.1/,
(ii) if k ≥ 2, ek−2 = .k − 1/gk−1.1/+ k.k − 1/gk.1/ :
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The proof is immediate from the preceding lemma and proposition.
We now apply these results to¼.s/ to obtain information aboutM.x/. By [6],

using results in [7], ¼.s/ belongs to the classA .
We shall state a well-known result about

∑
p∈c.1=Nps/, for c ∈ Cl, but first we

recall some definitions.
Let K be an algebraic number field of degreen overQwith class group Cl.K / = Cl

of orderh. Let Ĉl denote the character group of Cl, that is, the group of homomor-
phisms from Cl into the multiplicative groupC∗. As usual, we denote the principal
character, that is, the constant character 1, by either�0 or simply by 1.

Let � be an arbitrary character on Cl, then we define theL-series

L.s; �/ =
∑
a

�.a/

Nas
.¦ > 1/;

where the sum is over all (nonzero) integral ideals ofK .
If � = 1, the principal character, thenL.s; �0/ = �K .s/, the Dedekind zeta function

of K .
As is well known,L.s; �/ converges absolutely and uniformally on compact subsets

in the half plane¦ > 1. Moreover, since the norm mapN is completely multiplicative
on the set of ideals ofK , we have

L.s; �/ =
∏
p

(
1 − �.p/

Nps

)−1

;

for all ¦ > 1 and where the product is taken over all (nonzero) prime ideals ofK . It is
also well known that in the half plane¦ > 1 − 1=n, the series forL.s; �/ converges,
if � 6= 1, andL.s; �/ is regular there. On the other hand,�K .s/ has a continuation
into the same half plane but with a simple pole ats = 1 with (nonzero) residueaK .

Furthermore, in the regionRK given by

¦ > 1 − cK

log.|t | + 2/
;

L.s; �/ does not vanish, wherecK depends onK but not on� .
Now, sinceL.s; �/ is nonzero in the region above, we see that logL.s; �/ is defined

and regular in this region.

PROPOSITION3.4. Let c be an ideal class ofCl. Then∑
p∈c

1

Nps
= 1

h
log�K .s/+ 1

h

∑
�
� 6=1

�.c/ log L.s; �/−
∞∑

m=2

∑
p

pm∈c

1

m Npms
;

for ¦ > 1.
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For a proof see, for example [8], (or just about any text on algebraic number theory).
Notice that this proposition allows us to analytically continue

∑
p∈c Np−s onto the

regionRK .

COROLLARY 3.5. Let gc.s/ = ∑
p∈c.1=Nps/− .1=h/ log.1=.s − 1//. Then

gc.s/ = 1

h
log..s − 1/�K .s//+ 1

h

∑
�
� 6=1

�.c/ log L.s; �/−
∞∑

m=2

∑
p

pm∈c

1

m Npms
;

hence regular inRK . In particular,

gc.1/ = 1

h
logaK + 1

h

∑
�
� 6=1

�.c/ log L.1; �/−
∞∑

m=2

∑
p

pm∈c

1

m Npm
;

whereaK is the residue of�K .s/ at s = 1.

PROOF. Write �K .s/ as.1=.s − 1//.s − 1/�K .s/ and then apply log.

We now apply this result toM.x/.

PROPOSITION3.6. Let K be an algebraic number field with class numberh and
associated Davenport numberD. Then

M.x/= DcDh−D x

log x
.log logx/D−1+ x

log x

D−2∑
j =0

ej .log logx/ j + O

(
x

.log x/3=2

)
;

where theej are given in Proposition3.1with gj .s/ = h− j cj .s/.

PROOF. The proof is immediate since¼.s/ = ∑D
¼=0 c¼.s/h−¼( log.1=.s − 1//

)¼
.

As an immediate corollary we have

COROLLARY 3.7. M.x/ ∼ DcDh−D.x=log x/.log logx/D−1.

Compare this with [5, Theorem 1]. But we also get the following result.

THEOREM3.8. For D ≥ 2,

M.x/ = x

log x

(
C.log logx/D−1 + B.log logx/D−2

)+ O .E.x// ;
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whereC = DcDh−D and B = .D − 1/cD−1.1/h1−D + D.D − 1/cDh−D , with  ,
Euler’s constant, and where

E.x/ =


x

log x
.log logx/D−3 if D ≥ 3;

x

.log x/3=2
otherwise:

4. The special case of number fields with cyclic class group

We now investigate the asymptotic behavior ofM.x/ when the number fieldK has
cyclic class group Cl of orderh > 1. Then we see, by Theorem3.8, that in order to
compute the coefficientsC andB, we need to determinecD andcD−1.s/. First of all,
notice thatD = h, for we have already observed thatD ≤ h for any Cl. But now
since Cl is cyclic generated byc, say, thench min= 1, whenceh ≤ D in this case.

Now by Corollary2.7, we need to determineDm for m = D = h andm = D −1 =
h − 1.

To this end, we cite the following main result of [3].

PROPOSITION4.1. Let S = .a1; : : : ; an−k/ be a sequence ofn − k (not necessarily
distinct) elements inZn = Z=nZ. Suppose1 ≤ k ≤ n=6 + 1 and that0 cannot be
expressed as a sum over a nonempty subsequence ofS; then there exist an integerc
coprime ton and a permutation¦ of the set{1; 2; : : : ; n − k} such thatca¦.i / = 1 for
i = 1; : : : ; n − 2k + 1, and

∑n−k
i =n−2k+2 |a¦.i /|n ≤ 2k − 2, where|x|n denotes the least

positive inverse image ofx under the natural homomorphism from the additive group
of integers ontoZn.

In particular, there are at leastn − 2k + 1 terms inSwhich are relatively prime to
n and all congruent to one another modulon.

We use this result to prove the following lemma.

LEMMA 4.2. SupposeCl = 〈c〉. Then

DD = {�k : 1 ≤ k ≤ h; .k; h/ = 1};
where�k : Cl → N0 with �k.c

k/ = h and�k.c
l / = 0 otherwise;

DD−1 = {½k : 1 ≤ k ≤ h; .k; h/ = 1};
where½k : Cl → N0 with ½k.c

k/ = h − 2; ½k.c
2k/ = 1, and½k.c

l / = 0 otherwise.

PROOF. We start by determining the elements ofDD. Supposec1; : : : ; ch ∈ Cl and∏h
i =1 ci

min= 1: Then theh sequencesSj = .c1; : : : ; ĉ j ; : : : ; ch/ (wherec j is omitted)
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satisfy the hypotheses of Proposition4.1with k = 1. Hence in eachSj there are at least
h−1 terms which are equal and generating Cl. Hence, we must havec1 = · · · = ch = c

and〈c〉 = Cl. ThusDD is as stated above.
Now considerDD−1. Supposec1; : : : ; ch−1 ∈ Cl and

∏h−1
i =1 ci

min= 1: Then the
h − 1 sequencesSj = .c1; : : : ; ĉ j ; : : : ; ch−1/ satisfy the hypotheses above withk = 2
providedh ≥ 6. (For h < 6 the lemma follows by a straightforward calculation.)
Hence, assumeh ≥ 6 in which case in eachSj there are at leasth − 3 terms which
are equal and generate Cl. But then, without loss of generality,c1 = · · · = ch−2 = c

where〈c〉 = Cl : Thusch−2d = 1 for somed ∈ Cl; whenced = c2, as desired.

This lemma along with Corollary2.7and Theorem3.8yields the following propo-
sition.

PROPOSITION 4.3. Let K be an algebraic number field with cyclic class group
Cl = 〈c〉 of orderh > 1. Then

M.x/ = x

log x

(
C.log logx/h−1 + B.log logx/h−2

)+ O .E.x// ;

whereC = '.h/=..h − 1/!hh/, and

B = '.h/

.h − 2/!hh
 + h − 1

hh−1

 '.h/

.h − 2/!a.h/+
1

.h − 1/!
h∑

k=1
.k;h/=1

gck.1/

 ;
wherea.h/ = 1=2, if h = 3, anda.h/ = 1, otherwise; and wheregc is as appears in
Corollary 3.5.

The proof follows immediately from Corollary2.7and Theorem3.8. (Notice that
whenh = 3, |D2| = 1, not'.h/.)

We now give an (partially) arithmetic interpretation of
∑h

k=1
.k;h/=1

gck.1/. First, we
introduce some notation.

Once again assumeK has cyclic class group Cl= 〈c〉 and letL be the Hilbert class
field of K . For each divisord of h let Ld denote the intermediate field in the extension
L=K of degreed over K . (Since by class field theory Gal.L=K / ' Cl and Cl is
cyclic, Ld is uniquely determined.) Notice in particular thatL1 = K and Lh = L.
Finally, letaLd be the residue of the Dedekind zeta function�Ld.s/ at s = 1.

THEOREM4.4. Given the assumptions of the previous paragraph,

h∑
k=1

.k;h/=1

gck.1/ =
∑
d|h

¼.d/

d
logaLd −

∑
m≥2

∑
p

〈[pm]〉=Cl

1

m Npm
:



384 David M. Bradley, Ali E.Özlük, Rebecca A. Rozario and C. Snyder [16]

PROOF. By Corollary3.5we have

h∑
k=1

.k;h/=1

gck.s/ = '.h/

h
log

(
.s − 1/�K .s/

)+ 1

h
þ.s/−

∞∑
m=2

h∑
k=1

.k;h/=1

∑
p

pm∈ck

1

m Npms
;

where

þ.s/ =
∑
�
� 6=1

h∑
k=1

.k;h/=1

�.ck/ log L.s; �/:

For j = 0; : : : ; h − 1, let� j be the character on Cl determined by� j .c/ = �
j

h for �h a
primitive hth root of unity. More generally, let�d; j be the character on Cl determined
by �d; j .c/ = �

j
d , for any positive integerd dividing h. Also let

cn. j / =
h∑

k=1
.k;h/=1

�
jk

h ;

the usual Ramanujan sum. Then

þ.s/ =
h−1∑
j =1

ch.− j / log L.s; � j /:

But the Ramanujan sum has the explicit representation (see, for example, [4, page 238])

cn. j / = '.h/
¼.h=.h; j //

'.h=.h; j //
;

and thus

þ.s/ = '.h/
∑
¹|h

¼.¹/

'.¹/

h−1∑
j =1

.h; j /=h=¹

log L.s; � j /

= '.h/
∑
¹|h

¼.¹/

'.¹/

h∑
j =1

p.h; j /=h=¹

log L.s; � j /− '.h/ log�K .s/:

Now, by [8, page 230], we have

log�Ld.s/ =
∑
¹|d

∑
j modv
. j;¹/=1

log L.s; �¹; j /:

But then by M̈obius inversion,∑
j modh
.h; j /=h=¹

log L.s; � j / =
∑

j modv
. j;¹/=1

log L.s; �¹; j / =
∑
d|¹
¼.¹=d/ log�Ld.s/:
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Thus

'.h/
∑
¹|h

¼.¹/

'.¹/

h∑
j =1

.h; j /=h=¹

log L.s; � j /

= '.h/
∑
¹|h

∑
d|¹

¼.¹/

'.¹/
¼
(¹

d

)
log�Ld.s/ = '.h/

∑
d|h

log�Ld.s/
∑
¹|h
d|¹

¼.¹/¼.¹=d/

'.¹/

= '.h/
∑
d|h

log�Ld.s/¼.d/
∑
¹|h
d|¹

¼2.¹/

'.¹/
= '.h/

∑
d|h

log�Ld.s/
h

'.h/

¼.d/

d

= h
∑
d|h

¼.d/

d
log�Ld.s/;

since ∑
¹|h
d|¹

¼2.¹/

'.¹/
= h

'.¹/

¼2.d/

d
;

see, for example, [1, Lemma 3]. Hence

þ.s/ = h
∑
d|h

¼.d/

d
log�Ld.s/− '.h/ log�K .s/:

Now notice that

lim
¦→1+

þ.s/ = h
∑
d|h

¼.d/

d
log.s − 1/�Ld.s/− '.h/ log.s − 1/�K .s/

−
(

h
∑
d|h

¼.d/

d
− '.h/

)
log.s − 1/

= h
∑
d|h

¼.d/

d
logaLd − '.h/ logaK ;

since'.h/ = h
∑

d|h ¼.d/=d. This gives us the result.

5. Examples

The coefficientC of M.x/ depends on the class group ofK , more precisely, on
the Davenport constant and the order of the class group. On the other hand, the
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coefficientB seems to depend more intrinsically on the arithmetic for the fieldK . In
this section we consider approximatingB for two imaginary quadratic number fields
of class number 2, namely,K1 = Q.

√−5/ andK2 = Q.
√−15/ to see if theB are

unequal. But before we carry out the calculations in these special cases, we consider
Proposition4.3for the case whereh = 2.

COROLLARY 5.1. Let K be a number field with class number2. Denote byc the
nonprincipal ideal class ofCl. Finally, let L be the Hilbert class field ofK . Then

M.x/ = 1

4

x

log x
log logx + 1

4
.2.1 + gc.1//+  /

x

log x
+ O

(
x

.log x/3=2

)
;

where is Euler’s constant and

gc.1/ = logaK − 1

2
logaL −

∑
m≥3

m≡1.2/

∑
p∈c

1

m Npm
:

We need to computeaK , aL , andS = ∑
m≥3

m≡1.2/

∑
p∈c 1=.m Npm/.

To this end, letF be any algebraic number field. Then the residue of�F .s/ ats = 1
is

aF = 2r1.2³/r2 RF hF

wF

√|dF | ;

wherer1 andr2 are the number of inequivalent real and complex embeddings ofF
into C, respectively;RF is the regulator ofF ; hF its class number;wF the number of
roots of unity inOF ; anddF is the discriminant ofF .

For K1 = Q.
√−5/, r1 = 0, r2 = 1, RK1 = 1,wK1 = 2, anddK1 = −20, and hence

aK1 = ³=
√

5.
For K2 = Q.

√−15/, r1 = 0, r2 = 1, RK2 = 1, wK2 = 2, anddK2 = −15, and
henceaK2 = 2³=

√
15:

The Hilbert class fields ofQ.
√−5 / andQ.

√−15/ areL1 = Q.
√−5;

√
5 / and

L2 = Q.
√−15;

√
5/, respectively. To computeaLi in these two cases, we first notice

that r1 = 0 andr2 = 2. To compute the other invariants, we shall use the fact that
Li are CM-fields, which will allow us to compute the regulatorsRL , and the fact that
Gal.Li=Q/ ' C.2/×C.2/, the Klein four group, which will give us a way to compute
the class numbers.

To this end, letL+ = L ∩R = Q.
√

5/ in both casesL = Li . Now RL+ = log..1+√
5/=2/ and by [12, Proposition 4.16] (for example)RL = .1=Q/2 log..1 + √

5/=2/,
whereQ = .EL : WL EL+/ ∈ {1; 2} with EF andWF the group of units, respectively,
roots of unity inOF for any number fieldF . But in our two cases,Q = 1; see [10,
Theorem 1]. Thus in both cases

RL = 2 log
1 + √

5

2
:
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By [8, Proposition 17, page 68] (for example) we see thatdL1 = 202 anddL2 = 152.
Finally, to compute the class numbers, we use Kuroda’s class number formula:

hL = 1

2
q.L/h1h2h3;

where thehi are the class numbers of the three quadratic subfields ofL, andq.L/ =
.EL : E1E2E3/ with Ei the group of units in the quadratic subfields, see, for example,
[9]. In our cases,h1h2h3 = 2 and sinceL=K is unramifiedq.L/ = 1, [10, Theorem 1].
Hence in both caseshL = 1.

Therefore,

aL1 = ³2

10
log

(
1 + √

5

2

)
and aL2 = 4³2

15
log

(
1 + √

5

2

)
:

Next, we need to approximate the two series

Si :=
∑
m≥3

m≡1.2/

∑
p∈ci

1

m Npm

for the fieldsKi , i = 1; 2 and where Cl.Ki / = 〈ci 〉. Now, since∑
m≥3

m≡1.2/

1

mzm
= 1

2

(
log.z + 1/

log.z − 1/
− 2

z

)
;

we see that

S =
∑
p∈c

∑
m≥3

m≡1.2/

1

m Npm
=
∑
p∈c

1

2

[
log

(
Np + 1

Np − 1

)
− 2

Np

]
:

We now truncate the seriesSat Np < x for x > 3 and estimate the truncation error
by a little elementary calculus. To this end, we writeS = S.x/+ E.x/, where

S.x/ :=
∑
p∈c

Np<x

1

2

[
log

(
Np + 1

Np − 1

)
− 2

Np

]
and

E.x/ =
∑
p∈c

Np≥x

∑
m≥3

m≡1.2/

1

m Npm
:

Now, notice that∑
p∈c

Np≥x

1

m Npm
<
∑
k≥x

2

mkm
<

∫ ∞

x−1

2

mtm
dt = 2

m.m − 1/.x − 1/m−1
;
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sinceNp = k can occur at most twice (whenpOK splits wherep|p). Hence

|E.x/| ≤
∞∑

m=3

2

m.m − 1/.x − 1/m−1

<
1

3

∞∑
m=3

1

.x − 1/m−1
= 1

3.x − 1/.x − 2/
<

1

3.x − 2/2
:

Next, to approximateS.x/, we need to find out which prime ideals are not principal
in OKi . But since theL are abelian overQ, the prime ideals that are nonprincipal
are determined by congruences on the rational primes contained in these ideals. We
now review this procedure. We consider the caseK = K1. Let .dK= / denote the
Kronecker symbol and supposep|p, p a positive rational prime; then.dK=p/ = −1
if and only if p = pOK , that is, p is inert in K . By reciprocity, this occurs when
p ≡ 11; 13; 17; 19 mod 20. Hence in this case,p is a principal ideal. Therefore, ifp
is nonprincipal, then.dK=p/ = 1 or 0, that is,p splits or is ramified, respectively,
in K . Suppose first thatpOK = pp; for distinct prime idealsp andp. Then by
properties of the Hilbert class field ofK , p andp are nonprincipal if and only ifpOL

is a prime ideal. ForK1, this happens if and only if.−20=p/ = 1 and.−1=p/ = −1,
that is, if and only ifp ≡ 3; 7 mod 20: (Notice then thatp andp are principal when
p ≡ 1; 9 mod 20:) On the other hand, the ramified primes inK1 are the (unique)
prime ideals dividing 2 and 5. But ifp|5 thenp = √−5OK1, which is principal;
whereas ifp|2, thenp is nonprincipal, since otherwisep = .a + b

√−5/OK1 for some
a; b ∈ Z, in which case 2= Np = a2 + 5b2, which is absurd. Similarly, forK2,
p is nonprincipal when.−15=p/ = 1 and.−3=p/ = −1, that is, whenp|p where
p ≡ 2; 8 mod 15, and forp = 3; 5 (ramified case). (On the other hand,p is principal
wheneverp ≡ 1; 4; 7; 11; 13; 14 mod 15.)

Thus,

S1.x/ = 1

2

[
log 3− 1

]+
∑
p<x

p≡3;7.20/

[
log

(
p + 1

p − 1

)
− 2

p

]
and

S2.x/ = 1

2
log 3− 1

3
− 1

5
+

∑
p<x

p≡2;8.15/

[
log

(
p + 1

p − 1

)
− 2

p

]
:

To approximateS to four decimal places, say, we use

|E.x/| < 1

3.x − 2/2
< 0:5 × 10−4;

in which case we may takex = 84. Then notice thatp ≡ 3; 7 mod 20 withp < 84
if and only if p = 3; 7; 23; 43; 47; 67; 83: Also p ≡ 2; 8 mod 15 withp < 84 if and
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only if p = 2; 17; 23; 47; 53; 83: HenceS1 ≈ S1.84/ ≈ 0:077827 andS2 ≈ S2.84/ ≈
0:232435 good to four decimal places.

On the other hand,

logaKi − 1

2
logaLi ≈

{
0:71229745 fori = 1;

0:36572386 fori = 2:

Therefore,gc1.1/ ≈ 0:6343 andgc2.1/ ≈ 0:1333.
This shows that the coefficientB differs for these two quadratic number fields.
Finally, as promised in the introduction, we characterize the primes and irreducibles

in Z[√−5 ] andZ[√−15] in terms of rational primes.

PROPOSITION5.2. (a) An element³ is prime inZ[√−5 ] if and only if ³ |p a
positive rational prime such thatp = 5 or p ≡ 1; 9; 11; 13; 17; 19 mod 20.
(b) ³ is prime inZ[√−15] if and only if p ≡ 1; 4; 7; 11; 13; 14 mod 15.
(c) Þ is irreducible but not prime inZ[√−5 ] if and only if |N.Þ/| = p1 p2 where

p1; p2 are positive rational primes such thatpi = 2 or pi ≡ 3; 7 mod 20.
(d) Þ is irreducible but not prime inZ[√−15] if and only if |N.Þ/| = p1 p2 where
pi = 3; 5 or pi ≡ 2; 8 mod 15.
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