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ON MORDELL-TORNHEIM SUMS AND
MULTIPLE ZETA VALUES
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To Paulo Ribenboim, in honor of his 80th birthday.

RÉSUMÉ. Nous prouvons que toute somme de Mordell-Tornheim avec des argu-
ments entiers positifs peut s’écrire comme une combinaison linéaire rationnelle de
valeurs prises par des fonctions multi-zêta ayant le même poids et la même profon-
deur. Selon un résultat de Tsumura, il s’ensuit que toute somme de Mordell-Tornheim
ayant un poids et une profondeur de parité différente peut s’exprimer comme une com-
binaison linéaire rationnelle de produits de valeurs prises par des fonctions multi-zêta
de profondeur plus petite.

ABSTRACT. We prove that any Mordell-Tornheim sum with positive integer argu-
ments can be expressed as a rational linear combination of multiple zeta values of the
same weight and depth. By a result of Tsumura, it follows that any Mordell-Tornheim
sum with weight and depth of opposite parity can be expressed as a rational linear
combination of products of multiple zeta values of lower depth.

1. Introduction

Let r and w be positive integers, and let s1, . . . , sr and s be complex numbers
satisfying s1 + · · · + sr + s = w. A Mordell-Tornheim sum of depth r and weight w is
a multiple series of the form

(1) T (s1, . . . , sr; s) :=
∞∑

m1=1

· · ·
∞∑

mr=1

1
ms1

1 · · ·msr
r (m1 + · · · + mr)s

·

Denote the real part of s by σ, and the real part of sj by σj for 1 ≤ j ≤ r. Since (1)
remains unchanged if the arguments s1, . . . , sr are permuted, we may as well suppose
that they are arranged in order of increasing real part. Then σ1 ≤ σ2 ≤ · · · ≤ σr, and
by Theorem 2.2 below, the series (1) is absolutely convergent if

σ +
k∑

j=1

σj > k
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for each k = 1, 2, . . . , r. We call (1) a Mordell-Tornheim zeta value in the case when
the arguments are all integers. These were first investigated by Tornheim [19] in the
case r = 2, and later by Mordell [18] and Hoffman [14] with s1 = · · · = sr = 1.

Of greater theoretical importance are the so-called multiple zeta series of depth r
and weight w = s1 + · · · + sr of the form

(2) ζ(s1, . . . , sr) :=
∑

n1>···>nr>0

r∏

j=1

n
−sj

j ,

in which the sum is over all positive integers n1, . . . , nr such that nj > nj+1 for
1 ≤ j ≤ r − 1. By Theorem 2.1 below, the series (2) is absolutely convergent if the
partial sums of the real parts of the arguments satisfy

k∑

j=1

#(sj) > k

for each k = 1, 2, . . . , r. If s1, . . . , sr are all integers, then (2) is called a multiple
zeta value of depth r and weight s1 + · · · + sr. Multiple zeta values have been studied
extensively; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] for example.

In this paper, we show how to express an arbitrary Mordell-Tornheim zeta value in
terms of multiple zeta values of the same weight and depth. More precisely, we shall
prove the following result.

Theorem 1.1. Every Mordell-Tornheim zeta value of depth r and weight w can
be expressed as a rational linear combination of multiple zeta values of depth r and
weight w.

Theorem 1.1 shows that the study of Mordell-Tornheim zeta values reduces to the
study of multiple zeta values. For example, the following parity result is an immedi-
ate consequence of Theorem 1.1 and the corresponding parity result for multiple zeta
values due to Tsumura [21] and for which an independent proof is given in [16].

Corollary 1.2. Every Mordell-Tornheim zeta value of depth at least 2 and with
weight and depth of opposite parity can be expressed as a rational linear combination
of products of multiple zeta values of lower depth.

We note that the case r = 2 of Theorem 1.2 was proved by Tornheim [19]. Explicit
formulas for Tornheim’s reduction were given in [15]; see also [23].

2. Convergence criteria

Theorem 2.1. Let r be a positive integer, and let s1, . . . , sr be complex numbers
with respective real parts σ1, . . . ,σr. The multiple zeta series (2) is absolutely conver-
gent if for each positive integer k such that 1 ≤ k ≤ r, the inequality

k∑

j=1

σj > k

holds.
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Proof. The case r = 1 is a familiar consequence of the integral test from calculus.
Let d be a positive integer, and let s1, s2, . . . , sd+1 be complex numbers with respective
real parts σ1, σ2, . . . ,σd+1. First, suppose that σd+1 < 1. The Euler-Maclaurin sum
formula implies that

(3)
∑

n1>···>nd+1>0

∣∣∣∣∣∣

d+1∏

j=1

n
−sj

j

∣∣∣∣∣∣
$

∑

n1>···>nd>0

n
1−σd+1

d

d∏

j=1

n
−σj

j .

By induction, the series on the right-hand side of (3) converges if for each positive
integer k such that 1 ≤ k ≤ d− 1,

k∑

j=1

σj > k and



(σd + σd+1 − 1) +
d−1∑

j=1

σj > d ⇐⇒
d+1∑

j=1

σj > d + 1



 .

Therefore, the series obtained by removing the absolute value bars from the series on
the left-hand side of (3) is absolutely convergent a fortiori if for each positive integer k
such that 1 ≤ k ≤ d + 1,

k∑

j=1

σj > k.

Now suppose that σd+1 ≥ 1 and that

k∑

j=1

σj > k

for every positive integer k such that 1 ≤ k ≤ d + 1. Let ε > 0 be defined by the
equation

d∑

j=1

σj = d + 2ε.

The Euler-Maclaurin sum formula implies that

∑

n1>···>nd+1>0

∣∣∣∣∣∣

d+1∏

j=1

n
−sj

j

∣∣∣∣∣∣
$

∑

n1>···>nd>0

(log nd)
d∏

j=1

n
−σj

j

$
∑

n1>···>nd>0

n−(σd−ε)
d

d−1∏

j=1

n
−σj

j .

(4)

By induction, the series on the right-hand side of (4) converges because for each positive
integer k such that 1 ≤ k ≤ d− 1,

k∑

j=1

σj > k and (σd − ε) +
d−1∑

j=1

σj = d + ε > d.

Therefore, the series obtained by removing the absolute value bars from the series on
the left-hand side of (4) is absolutely convergent. !
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Remark 2.1. The condition for absolute convergence of (2) is incorrectly stated
in [22] as

σ1 > 1 and
r∑

j=1

σj > r.

For a counterexample, these inequalities are satisfied if s1 = s3 = 2 and s2 = 0, but

∑

n1>n2>n3>0

n−2
1 n−2

3 =
∞∑

n1=1

1
n2

1

n1−1∑

n2=1

n2−1∑

n3=1

1
n2

3

≥
∞∑

n=3

1
n2

n−1∑

k=2

1 =
∞∑

n=3

n− 2
n2

=∞.

Sufficient conditions for absolute convergence of a more general class of multiple
Dirichlet series are given in [17], but the proof takes 4 pages.

Theorem 2.2. Let r be a positive integer, and s1, . . . , sr complex numbers arranged
so that their respective real parts σ1, . . . ,σr satisfy σj ≤ σj+1 for 1 ≤ j ≤ r− 1. Let s
be a complex number with real part σ. If for each positive integer k such that 1 ≤ k ≤ r,
the inequality

σ +
k∑

j=1

σj > k

holds, then the Mordell-Tornheim series (1) is absolutely convergent.

Proof. The summation indices m1, . . . ,mr in (1) obviously satisfy

max{mj : 1 ≤ j ≤ r} ≤
r∑

j=1

mj ≤ r max{mj : 1 ≤ j ≤ r}.

Therefore, using the symbol ) as a short-hand for “has the same order of magnitude
as”, we have

(5)
∞∑

m1=1

· · ·
∞∑

mr=1

∣∣∣∣
1

ms1
1 · · ·msr

r (m1 + · · · + mr)s

∣∣∣∣

)
∑

π∈Sr

∑

mπ(1)>···>mπ(r)>0

m−σ
π(1)

r∏

j=1

m
−σπ(j)

π(j) ,

where the outer sum on the right is over all permutations π of {1, 2, . . . , r} and we have
ignored all cases where there exists an equality between two or more indices mj since
these series converge under less stringent conditions. By Theorem 2.1, the series on
the right-hand side of (5) is absolutely convergent if for each permutation π and each
positive integer k such that 1 ≤ k ≤ r, we have

σ +
k∑

j=1

σπ(j) > k.

Since σ1 ≤ σ2 ≤ · · · ≤ σr, this will clearly be the case if for each positive integer k
such that 1 ≤ k ≤ r, we have

σ +
k∑

j=1

σj > k. !
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3. Proof of Theorem 1.1

Key to our proof of Theorem 1.1 is the following partial fraction decomposition.

Lemma 3.1. Let r and s1, s2, . . . , sr be positive integers, and let x1, x2, . . . , xr be
non-zero real numbers such that x := x1 + x2 + · · · + xr *= 0. Then

r∏

j=1

x
−sj

j =
r∑

j=1




r∏

k=1
k $=j

sk−1∑

ak=0



 Mj x−sj−Aj

r∏

k=1
k $=j

xak−sk
k ,

where

Mj :=
(sj + Aj − 1)!

(sj − 1)!

r∏

k=1
k $=j

1
ak!

and Aj :=
r∑

k=1
k $=j

ak.

Proof. Applying the partial differential operator

r∏

n=1

1
(sn − 1)!

(
− ∂

∂xn

)sn−1

to both sides of the trivial identity

r∏

j=1

x−1
j =

r∑

j=1

x−1
r∏

k=1
k $=j

x−1
k , with x :=

r∑

j=1

xj

yields

r∏

j=1

x
−sj

j =
r∑

j=1






r∏

n=1
n$=j

1
(sn − 1)!

(
− ∂

∂xn

)sn−1





x−sj

r∏

k=1
k $=j

x−1
k

=
r∑

j=1




r∏

k=1
k $=j

sk−1∑

ak=0








(sj + Aj − 1)!

(sj − 1)!

r∏

k=1
k $=j

1
ak!



 x−sj−Aj

r∏

k=1
k $=j

xak−sk
k ,

as claimed. !

Proof of Theorem 1.1. For 1 ≤ l ≤ r − 1, let

Tl(s1, . . . , sr) :=
∞∑

m1=1

. . .
∞∑

mr=1

(
l∏

k=1

m−sk
k

) (
r∏

k=l+1

n−sk
k

)
, with nk :=

k∑

j=1

mj .
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In Lemma 3.1, let xj = mj , multiply both sides by n−s
r and sum over all positive

integers mj for 1 ≤ j ≤ r. We find that

T (s1, . . . , sr; s) =
r∑

j=1




r∏

k=1
k $=j

sk−1∑

ak=0



 Mj

∞∑

m1=1

. . .
∞∑

mr=1

n
−s−sj−Aj
r

r∏

k=1
k $=j

mak−sk
k

=
r∑

j=1




r∏

k=1
k $=j

sk−1∑

ak=0



 MjTr−1



 r
Cat
k=1
k $=j

{sk − ak}, s + sj + Aj



 ,

(6)

where
r

Cat
k=1
k $=j

{tk}

abbreviates the concatenated argument sequence t1, t2, . . . , tj−1, tj+1, . . . , tr−1, tr.
Note that the weight of T in (6) is equal to the sum of the arguments in Tr−1 on the
right-hand side. Now apply Lemma 3.1 with r = l, xj = mj , multiply both sides by

r∏

k=l+1

n−sk
k

and sum over all positive integers mj for 1 ≤ j ≤ r. We find that

Tl(s1, . . . , sr) =
l∑

j=1




l∏

k=1
k !=j

sk−1∑

ak=0



 Mj

∞∑

m1=1

· · ·
∞∑

mr=1




l∏

k=1
k !=j

mak−sk
k



 n
−sj−Aj

l

r∏

k=l+1

n−sk
k

=
l∑

j=1




l∏

k=1
k !=j

sk−1∑

ak=0



 MjTl−1



 l
Cat
k=1
k !=j

{sk − ak}, sj + Aj ,
r

Cat
k=l+1

sk



 .(7)

Since
l∑

k=1
k $=j

(sk − ak) + sj + Aj +
r∑

k=l+1

sk =
r∑

k=1

sk,

the weight is preserved in (7). Since

T1(s1, . . . , sr) =
∞∑

m1=1

. . .
∞∑

mr=1

m−s1
1

r∏

k=2

n−sk
k

=
∞∑

nr>···>n1>0

r∏

k=1

n−sk
k = ζ(sr, . . . , s1),

by induction the proof is complete. !

Before concluding, we note the following easy consequences of the results proved
in this section.
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Corollary 3.2. Let r − 1 and sj − 1 be positive integers for 1 ≤ j ≤ r. Let Mj

and Aj be as in Lemma 3.1 and let Tr−1 be as in the proof of Theorem 1.1. Then

r∏

j=1

ζ(sj) =
r∑

j=1




r∏

k=1
k $=j

sk−1∑

ak=0



 MjTr−1



 r
Cat
k=1
k $=j

{sk − ak}, sj + Aj



 .

Proof. Sum both sides of Lemma 3.1 over all positive integers x1, . . . , xr. !

Note that when r = 2, Corollary 3.2 reduces to Euler’s decomposition [12], namely

ζ(s)ζ(t) =
s−1∑

a=0

(
a + t− 1

t− 1

)
ζ(t + a, s− a) +

t−1∑

a=0

(
a + s− 1

s− 1

)
ζ(s + a, t− a).

Corollary 3.3 (Corollary 4.2 in [18]). For any positive integers r and s,

T (1, 1, . . . , 1︸ ︷︷ ︸
r

; s) = r! ζ(s + 1, 1, . . . , 1︸ ︷︷ ︸
r−1

).

Now combining equations (30) and (31) in [3], we have

T (1, 1, . . . , 1︸ ︷︷ ︸
r

; 1) = r! ζ(2, 1, . . . , 1︸ ︷︷ ︸
r−1

) = r! ζ(r + 1)

and

T (1, 1, . . . , 1︸ ︷︷ ︸
r

; 2) = r! ζ(3, 1, . . . , 1︸ ︷︷ ︸
r−1

) = r!

{
r + 1

2
ζ(r + 2)− 1

2

r−1∑

k=1

ζ(k + 1)ζ(r + 1− k)

}
.

4. Parity results

In the introductory section, we alluded to the following parity result for multiple
zeta values due to Tsumura [21] and for which an independent proof is given in [16].

Theorem 4.1. Every multiple zeta value of depth at least two and with weight and
depth of opposite parity can be expressed as a rational linear combination of products
of multiple zeta values of lower depth.

Clearly, Corollary 1.2 is an immediate consequence of Theorem 4.1 and our Theo-
rem 1.1. Alternatively, we can prove Corollary 1.2 by employing instead a recent parity
result of Tsumura [20] for Mordell-Tornheim zeta values.

Theorem 4.2. Every Mordell-Tornheim zeta value of depth at least two and with
weight and depth of opposite parity can be expressed as a rational linear combination
of products of Mordell-Tornheim zeta values of lower depth.

Corollary 1.2 is clearly also an immediate consequence of Tsumura’s Theorem 4.2
and our Theorem 1.1.



22 MORDELL-TORNHEIM SUMS AND MULTIPLE ZETA VALUES

Acknowledgments. Thanks are due to the referee for valuable suggestions concern-
ing emphasis and organization. Research of the second author was supported by the
National Natural Science Foundation of China, Project 10871169.

REFERENCES

[1] D. Borwein, J.M. Borwein and D.M. Bradley, Parametric Euler sum identities, J. Math.
Anal. Appl. 316 (2006), no. 1, 328–338.

[2] J.M. Borwein and D.M. Bradley, Thirty-two Goldbach variations, Int. J. Number Theory
2 (2006), no. 1, 65–103.

[3] J.M. Borwein, D.M. Bradley and D.J. Broadhurst, Evaluations of k-fold Euler/Zagier
sums: a compendium of results for arbitrary k, Electron. J. Combin. 4 (1997), no. 2,
Research Paper 5, approx. 21 pp. (electronic).

[4] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisoněk, Combinatorial aspects of
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