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Students tend to regard the elongated “S-shaped” logistic curve of population dy-
namics (Figure 1) as somewhat exotic. It is typically derived by applying the method of
partial fractions to a separable differential equation. My purpose here is to show how
the logistic curve may be derived more directly as a simple consequence of the more
familiar differential equation model for exponential decay, and that the curve itself is
nothing more than a familiar friend in disguise. The disguise is removed by abandon-
ing our fixation on the reference point (0, P0), representing the initial population at
time zero, in favor of a more natural choice. This illustrates an important principle,
namely that one should always adapt the coordinates to the problem at hand. In this
case, a great deal is simplified by relocating the origin more appropriately.

Textbooks typically begin the discussion of population growth with the exponential
model

1

P

d P

dt
= k �⇒ P(t) = P0ekt , t ≥ 0, (1)

in which the relative growth rate k is a positive constant, say the average birth rate.
Since unbounded growth is unrealistic, more sophisticated models take into account
factors such as limited resources for reproduction. The logistic model, proposed by
the Belgian mathematical biologist Pierre F. Verhulst in 1838 [1], replaces the con-
stant relative growth rate in (1) with a relative growth rate that decreases linearly as a
function of P:

1

P

d P

dt
= k

(
1 − P

M

)
, k > 0, 0 < P0 < M. (2)

The constant M represents the maximum sustainable population beyond which P can-
not increase. The dimensionless factor 1 − P/M in (2) serves to diminish the relative
growth rate from k down to zero as the population increases from its initial level P0

to M .
Although one can solve (2) as a Bernoulli differential equation by making the sub-

stitution P = 1/y, for the most part texts treat (2) as a separable differential equation
to be solved by the method of partial fractions. Either way, one obtains, after some
algebraic simplifications, the solution

P(t) = M

1 + R0e−kt
, where R0 = M − P0

P0
. (3)
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Figure 1.

For the instructor who would like to discuss logistic growth but would prefer to by-
pass partial fractions, an alternative approach is called for. Suppose instead of count-
ing individuals, we count niches, viewing M as the maximum number of niches the
ecosystem can support, and P as the number of niches currently occupied. Dimen-
sional analysis suggests that instead of studying P , we consider

R = M − P

P
, (4)

the dimensionless ratio of available or vacant niches to niches currently occupied. We
will dispense with (2) and instead make the simpler exponential decay differential
equation

1

R

d R

dt
= −k, k > 0, 0 < R0 < ∞ (5)

an assumption of the model. An obvious advantage of this approach is that solving (5)
is trivial. We get

R(t) = R0e−kt , (6)

which with the help of (4) is easily solved for P to obtain (3).
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A related aspect the approach via (4) and (5) we are proposing has in its favor is
that logistic growth can be introduced in the standard section on exponential growth
and decay, with no loss in continuity and without any additional background. That R
decreases at a rate proportional to itself, i.e., satisfies the differential equation (5), is
intuitively plausible. Initially we think of P being much smaller than M , so that R
is much larger than 1 and many niches are available relative to the number currently
occupied (a high niche vacancy rate). We should expect any species to take advantage
of such a hospitable climate for reproduction, and hence initially, R should decrease
rapidly as P increases. However, as the number of vacancies decreases, (P gets close
to M , R gets close to zero) there are relatively few available niches remaining. In such
an inhospitable climate, we should expect reproduction and hence further growth to be
difficult, and accordingly, R should decrease much more slowly. These considerations
should be sufficient to motivate the introduction of logistic growth via (4) and (5)
to any calculus or differential equations class. (Of course (5) could also be derived
from (2) with little difficulty.)

From the viewpoint of an individual of the species attempting to reproduce, one
should expect a qualitative change in the hospitality of the ecosystem near R = 1,
given the considerations of the previous paragraph. Motivated by these considerations,
we refer to an ecosystem as being hospitable or inhospitable according to whether R is
greater or less than 1. From (4) and (6), the transition from hospitable to inhospitable
occurs when

R = 1, P = 1

2
M, t = τ0 := 1

k
log R0 = 1

k
log

(
M − P0

P0

)
. (7)

This is precisely the time at which P is increasing most rapidly, as can be seen by
completing the square in (2):

d P

dt
= 1

4
Mk − k

M

(
P − 1

2
M

)2

.

Because of the distinguished nature of the point (τ0, (1/2)M) it seems more sensible
to measure time from τ0 than from zero. Certainly t = 0 is completely arbitrary from
the viewpoint of the species, having more to do with whatever external forces (desire,
opportunity, availability of funding, and so on) conspired to allow the biologist or
census taker to obtain an initial field count than any essential features of the system.
Therefore, we consider

Q(τ ) := P(τ0 + τ),

where τ measures time from τ0 and hence may be positive or negative. From (3), we
have

Q(τ ) = M

1 + R0e−k(τ0+τ )
= M

1 + e−kτ
,

since R0e−kτ0 = 1. Thus,

Q(τ ) − 1

2
M = M

1 + e−kτ
− 1

2
M = 1

2
M

(
1 − e−kτ

1 + e−kτ

)
= 1

2
M tanh

(
1

2
kτ

)
, (8)

or

P(t) = 1

2
M

(
1 + tanh

(
1

2
k(t − τ0)

))
, (9)
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where τ0 is given by (7). Thus, the mysterious “S-shaped” logistic curve is nothing
more than a translate of our old and familiar friend, the hyperbolic tangent.

Addendum

If 0 ≤ P0 ≤ M , then ∞ ≥ R0 ≥ 0. The boundary cases P0 = 0 and P0 = M corre-
spond to R0 = ∞, P(t) ≡ 0 and R0 = 0, P(t) ≡ M , respectively. To complete the
analysis of logistic growth, it is necessary to consider what happens when P0 lies out-
side the closed interval [0, M], i.e. R0 < 0. The solution (3) is valid for such R0, but (9)
was predicated on the assumption R0 > 0 in the definition of τ0. Putting S0 = −R0,
we have from (3) that

P(t) = M

1 − S0e−kt
, S0 > 0.

In this case, we define

τ0 := 1

k
log S0 (10)

Figure 2.
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so that

ekτ0 = S0 = P0 − M

P0
.

A calculation analogous to (8) reveals that

H(τ ) := P(τ0 + τ) = 1

2
M

(
1 + coth

(
1

2
kτ

))
,

or

P(t) = 1

2
M

(
1 + coth

(
1

2
k(t − τ0)

))
,

where now τ0 is given by (10).
If P0 > M , then −1 ≤ R0 < 0, 0 < S0 = −R0 ≤ 1, and −∞ < τ0 ≤ 0. Therefore,

for t ≥ 0 we are on the upper arch of the hyperbolic cotangent, with population de-
creasing exponentially to M as t → ∞ (Figure 2). In the less biologically meaningful
case P0 < 0, we have −1 ≥ R0 > −∞, 1 ≤ S0 = −R0 < ∞ and 0 ≤ τ0 < ∞. As t
increases from zero to τ0, the rightmost portion of the lower arch of the hyperbolic
cotangent is traversed, sending the population to minus infinity. The asymptote is then
crossed and we skip over to the upper arch, the population reverting to its behaviour in
the previous case.
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