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6. L. Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph.D. thesis, Rutgers Uni-
versity, 2008.

7. R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin. 6 (1985) 383–406.

Summary This paper explores a surprising connection between a geometry problem and a result in enumerative
combinatorics. First, we find the surface areas of certain solids formed from unit cubes. Next, we enumerate
multiset permutations which avoid the patterns {132, 231, 2134}. Finally, we give a bijection between the faces
of the solids and the set of permutations.
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After Cantor [3, p. 107] (cf. also [2]), the standard method of enumerating the set
Z+ × Z+ of ordered pairs of positive integers is to list the entries by traversing succes-
sive diagonals, beginning with (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), and so on. An
explicit bijection that accomplishes this is ϕ : Z+ × Z+ → Z+ defined by

ϕ(m, n) = m + (m + n − 1)(m + n − 2)

2
.

Providing an algebraic proof that ϕ is indeed a bijection is an instructive exercise.
By exploiting the multiplicative structure of the codomain, we can construct a map

ψ : Z+ × Z+ → Z+ which is immediately recognized as a bijection. (No need to re-
sort to algebraic calculation or a pictorial argument with diagonals.) For each pair of
positive integers m and n, let ψ(m, n) = 2m−1(2n − 1). Bijectivity of ψ is equivalent
to the fact that every positive integer has a unique representation as the product of an
odd positive integer and a non-negative integer power of 2. As one referee noted, this
fact is also key to Glaisher’s bijection between partitions of a positive integer into odd
parts and partitions with distinct parts [1, Ex. 2.2.6; 4, p. 12].
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