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[9] and Wells [10] is closely related to the 3-dimensional case of the main theorem. It
explains what happens when the six vertices of the octahedron are allowed to lie in the
same plane. This result can be generalized to polygons with an even number of sides.

Figures in this note and additional figures can be found at the MAGAZINE website,
as well as Geometer’s Sketchpad or Cabri 3d files that allow experimentation.
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In the October 2007 issue of this MAGAZINE [2], Walsh presents a curious primality
test, attributed to a mysterious taxi-cab driver. Sensing there must be more to the story,
I decided to track down Walsh’s cab driver. As it turned out, the cabbie was bemused
to learn that her off-hand remark became the subject of a journal article, so I showed
it to her.

“That’s interesting,” she said, “but I had a simpler result in mind, and also a simpler
proof.” She then proceeded to explain. “Walsh’s test is based on the Maclaurin series
expansion

e(xk/k) =
∞∑
j=0

(xk/k) j

j ! =
∞∑
j=0

xk j

k j j ! . (1)

Using this, he defined

gn(x) =
n−1∑
k=1

e(xk/k) =
n−1∑
k=1

∞∑
j=0

xk j

k j j ! ,
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for real x and integer n > 1, and then computed the nth derivative of gn at 0 as

g(n)
n (0) =

n−1∑
k=1
k|n

n!
kn/k(n/k)! , (2)

employing the standard abbreviation k|n for the condition that n/k ∈ Z.
Walsh’s test amounts to the observation that an integer n > 1 is prime if and only

if g(n)
n (0) = 1. Now it’s not hard to see that the k j factor in the denominator of the

rightmost sum in (1) plays no role other than to reduce the size of g(n)
n (0) when n is

composite. What I actually had in mind is the following:

THEOREM. For each integer n > 1, define the function fn : R → R by

fn(x) =
n−1∑
k=1

e(xk ).

An integer n > 1 is prime if and only if the nth derivative of fn satisfies f (n)
n (0) = 1.

Proof. In light of the fact that the Maclaurin series expansion

e(xk ) =
∞∑
j=0

xk j

j !

is valid for all real x and all positive integers k, it follows that if x ∈ R, then

fn(x) =
n−1∑
k=1

∞∑
j=0

xk j

j ! . (3)

Now we could calculate f (n)
n following Walsh [2], by repeatedly differentiating term

by term, but it seems easier to note that by Taylor’s theorem, f (n)
n (0) is equal to n! times

the coefficient of xn in fn(x). Observe that we get a contribution to the coefficient of
xn in (3) if and only if n = k j . We conclude that

f (n)
n (0) =

n−1∑
k=1
k|n

n!
(n/k)! = 1 +

n−1∑
k=2
k|n

n!
(n/k)! . (4)

If n is prime, then the sum on the right is empty; otherwise it is strictly positive.”

I then pointed out that the same idea would work if we eliminated not just the k j

in (1), but the j ! too. For, if |x | < 1 and k is any positive integer, then the formula for
the sum of geometric series with ratio xk gives

1

1 − xk
=

∞∑
j=0

xk j . (5)

If we now define

hn(x) = 1

n!
n−1∑
k=1

1

1 − xk
= 1

n!
n−1∑
k=1

∞∑
j=0

xk j (6)
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for integer n > 1 and real x such that −1 < x < 1, then the same reasoning shows
that

h(n)
n (0) =

n−1∑
k=1
k|n

1 = τ(n) − 1, (7)

where τ(n) is the number of positive integer divisors of n. It follows that h(n)
n (0) = 1

if and only if n is prime.
The cabbie nodded. “Of course, it would be nice if you could use a single function

to test all positive integers n. It’s tempting to try something like
∞∑

k=1

1

1 − xk
,

but that diverges if −1 < x < 1. But if you look at (5) and (6), you’ll see that the
j = 0 term plays no essential role in the subsequent argument. Dropping it leads us to
consider

L(x) :=
∞∑

k=1

xk

1 − xk
=

∞∑
k=1

∞∑
j=1

xk j ,

which is valid for all real x such that −1 < x < 1. Furthermore, the same reasoning
as before shows that

L (n)(0)

n! = [coefficient of xn in L(x)] =
n∑

k=1
k|n

1 = τ(n), (8)

so a positive integer n is prime if and only if L (n)(0)/n! = 2.”
“But wait a minute,” I said. “What you’ve actually shown is that if −1 < x < 1,

then
∞∑

k=1

xk

1 − xk
=

∞∑
n=1

τ(n)xn.

This is nothing other than Lambert’s generating series for the divisor function [1,
p. 280].”

The driver then observed that just as (7) and (8) have obvious combinatorial inter-
pretations, so does (4): It counts the number of ways to partition a set of n distinct
objects into ordered tuples of equal length less than n. Obviously, this is equal to 1 if
and only if n is prime. The question then arose as to whether Walsh’s approach also
has a combinatorial interpretation. As Walsh himself confirmed [3], his g(n)

n (0) (see (2)
above) counts the number of permutations of n distinct objects that can be written as
a product of pairwise disjoint cycles of equal length less than n. To see this, note that
the number of ways to partition kr distinct objects into r sets of size k is

(kr)!
r ! (k!)r

.

For each set, the number of ways to form a cycle of size k is (k − 1)!. Hence, the
number of permutations of kr objects that can be written as a product of pairwise
disjoint cycles of length k is equal to

(kr)!
r !

(
(k − 1)!

k!
)r

= (kr)!
r ! kr

.

Letting n = kr and summing over 1 ≤ k ≤ n − 1 such that k|n, we get (2).
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In his recent note [2], Timo Tossavainen proves what he calls “The Lost Cousin of the
Fundamental Theorem of Algebra,” which we state as:

EXPONENTIAL THEOREM. For any integer n ≥ 1, let 0 < κ0 < κ1 < · · · < κn and
a j (for j = 0, . . . , n) be real numbers with an �= 0. Then the function f : R → R,

f (t) =
n∑

j=0

a jκ
t
j

has at most n zeros.

Years ago, I was presented by a friend with a copy of a concise monograph [1] (112
pages long) on selected topics in polynomial approximation. In this book, apparently
unknown to western readers, the following fact and its proof appear:

GENERALIZED POLYNOMIAL THEOREM. A function g given by the formula

g(x) = a0xα0 + a1xα1 + · · · + an xαn ,

where α0 < α1 < · · · < αn are arbitrary real numbers and an �= 0, has no more than
n roots.

Proof. We proceed by induction on n, noting that for n = 1 the statement is obvi-
ous. Assume that for some n the claim is true, but for n + 1, it is not. Hence, for some
real numbers α0 < α1 < · · · < αn < αn+1 and an+1 �= 0, there is a function

g(x) = a0xα0 + a1xα1 + · · · + an xαn + an+1xαn+1 ,

whose number of positive roots is larger than n + 1. These roots are identical with the
roots of the new function

g(x)/xα0 = a0 + a1xα1−α0 + · · · + an xαn−α0 + an+1xαn+1−α0 .

By Rolle’s theorem, the derivative of the above function, which has the form

b0xβ0 + b1xβ1 + · · · + bn xβn ,


