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Abstract The double zeta function is a function of two arguments defined by a
double Dirichlet series, and was first studied by Euler in response to a letter from
Goldbach in 1742. By calculating many examples, Euler inferred a closed form eval-
uation of the double zeta function in terms of values of the Riemann zeta function, in
the case when the two arguments are positive integers with opposite parity. Here, we
establish a q-analog of Euler’s evaluation. That is, we state and prove a 1-parameter
generalization that reduces to Euler’s evaluation in the limit as the parameter q tends
to 1.

1 Introduction

The double zeta function is defined by

ζ (s, t) :=
∞

∑
n=1

1
ns

n−1

∑
k=1

1
kt , ℜ(s)> 1, ℜ(s+ t)> 2. (1)

The sums (1), and more generally those of the form

ζ (s1,s2, . . . ,sm) := ∑
k1>k2>···>km>0

m

∏
j=1

1
k

s j
j

,
n

∑
j=1

ℜ(s j)> n, n = 1,2, . . . ,m, (2)
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have attracted increasing attention in recent years; see eg. [2, 3, 4, 5, 7, 8, 9, 10, 12,
15, 20]. The survey articles [6, 16, 22, 25] provide an extensive list of references.
In (2) the sum is over all positive integers k1, . . . ,km satisfying the indicated inequal-
ities. Note that with positive integer arguments, s1 > 1 is necessary and sufficient for
convergence. As is now customary, we refer to the parameter m in (2) as the depth.
Of course (2) reduces to the familiar Riemann zeta function when the depth m = 1.

The problem of evaluating sums of the form (1) with integers s > 1 and t > 0
seems to have been first proposed in a letter from Goldbach to Euler [18] in 1742.
(See also [17, 19] and [1, p. 253].) Calculating several examples led Euler to infer a
closed form evaluation of the double zeta function in terms of values of the Riemann
zeta function, in the case when the two arguments have opposite parity. Euler’s
evaluation can be expressed as follows. Let s−1 and t−1 be positive integers with
opposite parity (i.e. s+ t is odd) and let 2h = max(s, t). Then

ζ (s, t) = (−1)s+1
h

∑
k=1

[(
s+ t−2k−1

t−1

)
+

(
s+ t−2k−1

s−1

)]
ζ (2k)ζ (s+ t−2k)

+
1
2
(
(1+(−1)s)

ζ (s)ζ (t)+
1
2

[
(−1)s

(
s+ t

s

)
−1

]
ζ (s+ t). (3)

If we interpret ζ (1) = 0, then Euler’s formula (3) gives true results also when t = 1
and s is even, but this case is subsumed by another formula of Euler, namely

2ζ (s,1) = sζ (s+1)−
s−1

∑
k=2

ζ (k)ζ (s+1− k), (4)

which is valid for all integers s > 1.
The evaluations (3) and (4) are both examples of reduction formulas, since they

both give a closed-form evaluation of a sum of depth 2 in terms of sums of depth 1.
More generally (see eg. [7, 8]) a reduction formula expresses an instance of (2) in
terms of lower depth sums.

With the general goal of gaining a more complete understanding of the myriad
relations satisfied by the multiple zeta functions (2) in mind, a q-analog of (2) was
introduced in [11] and independently in [21] and [23] as

ζ [s1,s2, . . . ,sm] := ∑
k1>k2>···>km>0

m

∏
j=1

q(s j−1)k j

[k j]
s j
q

, (5)

where 0 < q < 1 and for any integer k,

[k]q :=
1−qk

1−q
.

Observe that we now have

ζ (s1, . . . ,sm) = lim
q→1

ζ [s1, . . . ,sm],
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so that (5) represents a generalization of (2). The papers [11, 12, 14, 13] consider
values of the multiple q-zeta functions (5) and establish several infinite classes of
relations satisfied by them. In particular, the following q-analog of (4) was estab-
lished.

Theorem 1 (Corollary 8 of [11]). Let s−1 be a positive integer. Then

2ζ [s,1] = sζ [s+1]+ (1−q)(s−2)ζ [s]−
s−1

∑
k=2

ζ [k]ζ [s+1− k].

Here, we continue this general program of study by establishing a q-analog of
Euler’s reduction formula (3). Throughout the remainder of this paper, s and t denote
positive integers with additional restrictions noted where needed, and q is real with
0 < q < 1.

2 q-analog of Euler’s reduction formula

Throughout this section, we assume s > 1. We’ve seen that ζ [s, t] as given by (5)
is a q-analog of ζ (s, t) in (1). Here, we introduce additional q-analogs of ζ (s, t) by
defining

ζ1[s, t] = ζ1[s, t;q] := (−1)t
∑

u>v>0

q(s−1)u+(t−1)(−v)

[u]sq[−v]tq
= ∑

u>v>0

q(s−1)u+v

[u]sq[v]tq

and

ζ2[s, t] = ζ2[s, t;q] := (−1)s
∑

u>v>0

q(s−1)(−u)+(t−1)v

[−u]sq[v]tq
= ∑

u>v>0

qu+(t−1)v

[u]sq[v]tq
= qs+t

ζ1[s, t;1/q].

Let

ζ−[s] :=
∞

∑
n=1

q(s−1)(−n)

[−n]sq
= (−1)s

∞

∑
n=1

qn

[n]sq

and for convenience, put

ζ±[s] := ζ [s]+ζ−[s] = ∑
0 6=n∈Z

q(s−1)n

[n]sq
= (−1)s

∑
06=n∈Z

qn

[n]sq
.

Note that if s−1 is a positive integer and n 6= 0, then

qn

[n]sq
=

qn

[n]2q

(
1−q+

qn

[n]q

)s−2

=
s−2

∑
k=0

(
s−2

k

)
(1−q)k q(s−1−k)n

[n]s−k
q
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and so

ζ−[s] = (−1)s
s−2

∑
k=0

(
s−2

k

)
(1−q)k

ζ [s− k] (6)

and

ζ±[s] =
(
1+(−1)s)

ζ [s]+ (−1)s
s−2

∑
k=1

(
s−2

k

)
(1−q)k

ζ [s− k] (7)

are expressible in terms of values of the q-Riemann zeta function, i.e. (2) with m= 1.
Finally, as in [13], let

ϕ[s] :=
∞

∑
n=1

(n−1)q(s−1)n

[n]sq
=

∞

∑
n=1

nq(s−1)n

[n]sq
−ζ [s].

We also employ the notation [24](
z

a, b

)
:=

(
z
a

)(
z−a

b

)
=

(
z
b

)(
z−b

a

)
=

(
z

a+b

)
(a+b)!

a!b!

for the trinomial coefficient, in which a, b are nonnegative integers, and which re-
duces to z!/a!b!(z−a−b)! if z is an integer not less than a+b. We can now state
our main result.

Theorem 2 (q-analog of Euler’s double zeta reduction). Let s− 1 and t − 1 be
positive integers, and let 0 < q < 1. Then

(−1)t
ζ1[s, t]− (−1)s

ζ2[s, t]

=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b(

ζ±[s−a−b]ζ [a+ t]

−ζ [s+ t−b]− (1−q)ζ [s+ t−b−1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b(

ζ±[t−a−b]ζ [a+ s]

−ζ [s+ t−b]− (1−q)ζ [s+ t−b−1]
)

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1(2ζ [s+ t− j+1]− (1−q)ϕ[s+ t− j]

)
−ζ±[s]ζ [t]+ (−1)s

s−1

∑
k=0

(
s−1

k

)
(1−q)k

ζ [s+ t− k].

Corollary 1 (Euler’s double zeta reduction). Let s− 1 and t− 1 be positive inte-
gers with opposite parity, and let 2h = max(s, t). Then (3) holds.

Corollary 2. Let s− 1 and t− 1 be positive integers with like parity, and let 2h =
max(s, t). Then
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2
h

∑
k=1

[(
s+ t−2k−1

s−1

)
+

(
s+ t−2k−1

t−1

)]
ζ (2k)ζ (s+ t−2k)

=
(
1+(−1)s)

ζ (s)ζ (t)+
[(

s+ t
t

)
− (−1)s

]
ζ (s+ t).

Proofs. Let q→ 1 in Theorem 2. With the obvious notation

ζ±(s) := lim
q→1

ζ±[s] = ∑
06=n∈Z

1
ns =

(
1+(−1)s)

ζ (s),

we find that

(−1)t
ζ (s, t)− (−1)s

ζ (s, t) =
s−2

∑
a=0

(
a+ t−1

a

)(
ζ±(s−a)ζ (a+ t)−ζ (s+ t)

)
+

t−2

∑
a=0

(
a+ s−1

a

)(
ζ±(t−a)ζ (a+ s)−ζ (s+ t)

)
− 2

(
s+ t−2

s−1

)
ζ (s+ t)−ζ±(s)ζ (t)+(−1)s

ζ (s+ t).

Since

s−2

∑
a=0

(
a+ t−1

a

)
=

(
s+ t−2

t

)
and

t−2

∑
a=0

(
a+ s−1

a

)
=

(
s+ t−2

s

)
,

and (
s+ t−2

t

)
+

(
s+ t−2

s

)
+2

(
s+ t−2

s−1

)
=

(
s+ t

t

)
,

it follows that

(−1)t
ζ (s, t)− (−1)s

ζ (s, t)

=
s−2

∑
a=0

(
a+ t−1

a

)
ζ±(s−a)ζ (a+ t)+

t−2

∑
a=0

(
a+ s−1

a

)
ζ±(t−a)ζ (a+ s)

−
[(

s+ t−2
t

)
+

(
s+ t−2

s

)
+2

(
s+ t−2

s−1

)
− (−1)s

]
ζ (s+ t)−ζ±(s)ζ (t)

=
s

∑
j=2

(
s+ t− j−1

t−1

)
ζ±( j)ζ (s+ t− j)+

t

∑
j=2

(
s+ t− j−1

s−1

)
ζ±( j)ζ (s+ t− j)

−
[(

s+ t
t

)
− (−1)s

]
ζ (s+ t)−ζ±(s)ζ (t)

= 2
s/2

∑
k=1

(
s+ t−2k−1

t−1

)
ζ (2k)ζ (s+ t−2k)+2

t/2

∑
k=1

(
s+ t−2k−1

s−1

)
ζ (2k)ζ (s+ t−2k)
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−
(
1+(−1)s)

ζ (s)ζ (t)−
[(

s+ t
t

)
− (−1)s

]
ζ (s+ t). (8)

Since the binomial coefficients vanish if k exceeds the indicated range of summation
above, we can replace the two sums by a single sum on k ranging from 1 up to h.
If s and t have opposite parity, multiply both sides by (−1)t = (−1)s+1 and divide
each term by 2 to complete the proof of Corollary 1. For Corollary 2, note that if s
and t have like parity, then the left hand side of (8) vanishes. ut

3 Proof of Theorem 2

The key ingredient is the following partial fraction decomposition.

Lemma 1 (cf. Lemma 3.1 of [13] and Lemma 1 of [24]). If s and t are positive
integers, and u and v are non-zero real numbers such that u+ v 6= 0, then

1
[u]sq[v]tq

=
s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b q(t−1−b)u+av

[u]s−a−b
q [u+ v]a+t

q

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b qau+(s−1−b)v

[v]t−a−b
q [u+ v]a+s

q

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j q(t− j)u+(s− j)v

[u+ v]s+t− j
q

.

Proof. As in [13], let x and y be non-zero real numbers such that x+y+(q−1)xy 6=
0. Apply the partial differential operator

1
(r−1)!

(
− ∂

∂x

)r−1 1
(s−1)!

(
− ∂

∂y

)s−1

to both sides of the identity

1
xy

=
1

x+ y+(q−1)xy

(
1
x
+

1
y
+q−1

)
;

then let x = [u]q, y = [v]q and observe that then x+ y+(q−1)xy = [u+ v]q. ut

We now proceed with the proof of Theorem 2. First, multiply both sides of
Lemma 1 by q(s−1)u+(t−1)v to obtain

q(s−1)uq(t−1)v

[u]sq[v]tq
=

s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b q(s−a−b−1)uq(a+t−1)(u+v)

[u]s−a−b
q [u+ v]a+t

q

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b q(t−a−b−1)vq(a+s−1)(u+v)

[v]t−a−b
q [u+ v]a+s

q
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−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j q(s+t− j−1)(u+v)

[u+ v]s+t− j
q

.

After replacing u by u− v and v by −v, we find that

q(s−1)(u+v)q(t−1)(−v)

[u+ v]sq[−v]tq
=

s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)bq(s−a−b−1)(u+v)q(a+t−1)u

[u+ v]s−a−b
q [u]a+t

q

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)bq(t−a−b−1)(−v)q(a+s−1)u

[−v]t−a−b
q [u]a+s

q

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) jq(s+t− j−1)u

[u]s+t− j
q

. (9)

We’d like to sum (9) over all ordered pairs of positive integers (u,v), but we must
exercise some care in doing so since some of the terms on the right hand side may
diverge. The difficulty can be circumvented by judiciously combining the trouble-
some terms before summing. To this end, observe that

s−1

∑
a=0

(
a+ t−1

a,s−1−a

)
(1−q)s−1−aq(a+t−1)u

[u+ v]q[u]a+t
q

+
t−1

∑
a=0

(
a+ s−1

a, t−1−a

)
(1−q)t−1−aq(a+s−1)u

[−v]q[u]a+s
q

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) jq(s+t− j−1)u

[u]s+t− j
q

=
s

∑
j=1

(
s+ t− j−1
s− j, j−1

)
(1−q) j−1q(s+t− j−1)u

[u+ v]q[u]
s+t− j
q

+
t

∑
j=1

(
s+ t− j−1
t− j, j−1

)
(1−q) j−1q(s+t− j−1)u

[−v]q[u]
s+t− j
q

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) jq(s+t− j−1)u

[u]s+t− j
q

=

(
1

[u+ v]q
+

1
[−v]q

− (1−q)
)min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1q(s+t− j−1)u

[u]s+t− j
q

=

(
1

[u+ v]q
− 1

[v]q

)min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1q(s+t− j−1)u

[u]s+t− j
q

, (10)

where we have used the fact that(
s+ t− j−1
s− j, j−1

)
=

(
s+ t− j−1
t− j, j−1

)
=

(
s+ t− j−1
s− j, t− j

)
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vanishes if j > min(s, t). Substituting (10) into (9) yields

q(s−1)(u+v)q(t−1)(−v)

[u+ v]sq[−v]tq

=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)bq(s−a−b−1)(u+v)q(a+t−1)u

[u+ v]s−a−b
q [u]a+t

q

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)bq(t−a−b−1)(−v)q(a+s−1)u

[−v]t−a−b
q [u]a+s

q

−
(

1
[v]q
− 1

[u+ v]q

)min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1q(s+t− j−1)u

[u]s+t− j
q

. (11)

Now assume that s > 1. Then

∞

∑
u,v=1

(
1
[v]q
− 1

[u+ v]q

)
q(s+t− j−1)u

[u]s+t− j
q

=
∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

∑
k>n

(
1

[k−n]q
− 1

[k]q

)
.

Recalling that 0 < q < 1, we evaluate the telescoping sum

∑
k>n

(
1

[k−n]q
− 1

[k]q

)
= lim

N→∞

n+N

∑
k=n+1

(
1

[k−n]q
− 1

[k]q

)
= lim

N→∞

n

∑
k=1

(
1
[k]q
− 1

[N + k]q

)
= (q−1)n+

n

∑
k=1

1
[k]q

,

so that

∞

∑
u,v=1

(
1
[v]q
− 1

[u+ v]q

)
q(s+t− j−1)u

[u]s+t− j
q

= (q−1)
(
ϕ[s+ t− j]+ζ [s+ t− j]

)
+

∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

n

∑
k=1

1
[k]q

.

But this last double sum evaluates as

∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

n

∑
k=1

1
[k]q

= ∑
n>k>0

q(s+t− j−1)n

[n]s+t− j
q [k]q

+
∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j+1
q

= ζ [s+ t− j,1]+
∞

∑
n=1

q(s+t− j)n

[n]s+t− j+1
q

+
∞

∑
n=1

q(s+t− j−1)n−q(s+t− j)n

[n]s+t− j+1
q
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= ζ [s+ t− j,1]+ζ [s+ t− j+1]+ (1−q)
∞

∑
n=1

(
1−qn

1−q

)
q(s+t− j−1)n

[n]s+t− j+1
q

= ζ [s+ t− j,1]+ζ [s+ t− j+1]+ (1−q)
∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

= ζ [s+ t− j,1]+ζ [s+ t− j+1]+ (1−q)ζ [s+ t− j].

It follows that

∞

∑
u,v=1

(
1
[v]q
− 1

[u+ v]q

)
q(s+t− j−1)u

[u]s+t− j
q

= ζ [s+ t− j,1]+ζ [s+ t− j+1]+ (q−1)ϕ[s+ t− j].

Consequently, summing (11) over all ordered pairs of positive integers (u,v) yields

(−1)t
ζ1[s, t] =

s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b

ζ [s−a−b,a+ t]

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b

ζ−[t−a−b]ζ [a+ s]

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1

×
(
ζ [s+ t− j,1]+ζ [s+ t− j+1]− (1−q)ϕ[s+ t− j]

)
. (12)

Now assume also that t > 1. For each pair of integers (a,b) with 0 ≤ a ≤ s− 1,
0 ≤ b ≤ s− 2− a, we apply the q-stuffle multiplication rule [11, eq. (2.2)] in the
form

ζ [s−a−b]ζ [a+ t] = ζ [s−a−b,a+ t]+ζ [a+ t,s−a−b]

+ζ [s+ t−b]+ (1−q)ζ [s+ t−b−1],

substituting for ζ [s−a−b,a+ t] in (12). Thus, we find that

(−1)t
ζ1[s, t] =

s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b(

ζ [s−a−b]ζ [a+ t]−ζ [s+ t−b]

−(1−q)ζ [s+ t−b−1]−ζ [a+ t,s−a−b]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b

ζ−[t−a−b]ζ [a+ s]

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1

×
(
ζ [s+ t− j,1]+ζ [s+ t− j+1]− (1−q)ϕ[s+ t− j]

)
.
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The sum of ζ [s+ t − j,1] over j can be combined with the double sum of ζ [a+
t,s− a− b] over a and b by extending the range of the latter to include the value
b = s−1−a. Doing this yields

(−1)t
ζ1[s, t] =

s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b(

ζ [s−a−b]ζ [a+ t]

−ζ [s+ t−b]− (1−q)ζ [s+ t−b−1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b

ζ−[t−a−b]ζ [a+ s]

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1

×
(
ζ [s+ t− j+1]− (1−q)ϕ[s+ t− j]

)
−

s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b

ζ [t +a,s−a−b].

It follows that for integers s > 1 and t > 1,

(−1)s
ζ1[t,s]+ (−1)t

ζ1[s, t]

=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b(

ζ±[s−a−b]ζ [a+ t]

−ζ [s+ t−b]− (1−q)ζ [s+ t−b−1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b(

ζ±[t−a−b]ζ [a+ s]

−ζ [s+ t−b]− (1−q)ζ [s+ t−b−1]
)

−2
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1(

ζ [s+ t− j+1]− (1−q)ϕ[s+ t− j]
)

−
s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b

ζ [t +a,s−a−b]

−
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b

ζ [s+a, t−a−b]. (13)

By Theorem 2.1 of [13],

ζ [s]ζ [t] =
s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b

ζ [t +a,s−a−b]

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b

ζ [s+a, t−a−b]
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−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j

ϕ[s+ t− j].

We use this latter decomposition formula to eliminate the last two sums of double
q-zeta values in (13), obtaining

(−1)s
ζ1[t,s]+ (−1)t

ζ1[s, t]+ζ [s]ζ [t]

=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t−1

a,b

)
(1−q)b(

ζ±[s−a−b]ζ [a+ t]

−ζ [s+ t−b]− (1−q)ζ [s+ t−b−1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s−1

a,b

)
(1−q)b(

ζ±[t−a−b]ζ [a+ s]

−ζ [s+ t−b]− (1−q)ζ [s+ t−b−1]
)

−
min(s,t)

∑
j=1

(
s+ t− j−1
s− j, t− j

)
(1−q) j−1

×
(
2ζ [s+ t− j+1]− (1−q)ϕ[s+ t− j]

)
. (14)

But

ζ−[s]ζ [t] = (−1)s
∞

∑
u=1

qu

[u]sq

∞

∑
v=1

q(t−1)v

[v]tq

= (−1)s
∑

u>v>0

qu+(t−1)v

[u]sq[v]tq
+(−1)s

∑
v>u>0

q(t−1)v+u

[v]tq[u]sq
+(−1)s

∞

∑
v=1

qtv

[v]s+t
q

.

Since

qtv

[v]s+t
q

=
qtv

[v]t+1
q

(
1−q+

qv

[v]q

)s−1

=
s−1

∑
k=0

(
s−1

k

)
(1−q)kq(s+t−k−1)v

[v]s+t−k
q

,

it follows that
∞

∑
v=1

qtv

[v]s+t
q

=
s−1

∑
k=0

(
s−1

k

)
(1−q)k

ζ [s+ t− k],

and therefore

ζ−[s]ζ [t] = (−1)s
ζ2[s, t]+ (−1)s

ζ1[t,s]+ (−1)s
s−1

∑
k=0

(
s−1

k

)
(1−q)k

ζ [s+ t− k].

We now use this formula to substitute the initial (−1)sζ1[t,s] term in (14) to com-
plete the proof. ut
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